7 research outputs found

    SARAF MEBT Commissioning

    No full text
    International audienceSNRC in Israel is in the process of constructing a neutron production accelerator facility called SARAF. The facility will utilize a linac to accelerate a 5 mA CW deuteron and proton beam up to 40 MeV. In the first phase of the project, SNRC completed construction and operation of a linac (referred to as SARAF Phase I) which included an ECR ion source, a Low-Energy Beam Transport (LEBT) line, and a 4-rod RFQ. The second phase of the project involves collaboration between SNRC and Irfu in France to manufacture the linac. The injector control system has been updated and the Medium Energy Beam Transport (MEBT) line has been installed and integrated into the infrastructure. Recent testing and commissioning of the injector and MEBT with 5 mA CW protons and 5 mA pulsed Deuterons, completed in 2022 and 2023, will be presented and discussed. A special attention will be paid to the experimental data processing with the Bayesian inference of the parameters of a digital twin

    Machine Protection System at SARAF

    No full text
    International audienceCEA Saclay Irfu is in charge of the major part of the control system of the SARAF-LINAC accelerator based at Soreq in Israel. This scope also includes the Machine Protection System. This system prevents any damage in the accelerator by shutting down the beam in case of detection of risky incidents like interceptive diagnostics in the beam or vacuum or cooling defects. So far, the system has been used successfully up to the MEBT. It will be tested soon for the super conducting Linac consisting of 4 cryomodules and 27 cavities. This Machine Protection System relies on three sets: the MRF timing system that is the messenger of the "shut beam" messages coming from any devices, IOxOS MTCA boards with custom FPGA developments that monitor the Section Beam Current Transmission along the accelerator and a Beam Destination Master that manages the beam destination required. This Destination Master is based on a master PLC. It permanently monitors Siemens PLCs that are in charge of the "slow" detection for fields such as vacuum, cryogenic and cooling system. The paper describes the architecture of this protection system and the exchanges between these three main parts

    The SARAF-LINAC Project 2019 Status

    No full text
    International audienceSNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC solenoid-Package have been tested recently. Meanwhile, the cryomodules technical specifications have been written and called for tender. This paper presents the status of the SARAF-LINAC Project at April 2019

    Evolution Based on MicroTCA and MRF Timing System

    No full text
    International audienceFor many years our Institute CEA IRFU has had a sound experience in VME and EPICS. For the accelerator projects SPIRAL2 at Ganil in Normandy and IFMIF/LIPAc at JAEA/Rokkasho (Japan) the EPICS control systems were based on VME. For 5 years our Institute has been involved in several in-kind collaboration contracts with ESS. For the first contracts (ESS test stands, Source and LEBT controls) ESS recommended us to use VME based solutions on IOxOS boards. Our close collaboration with ESS, their support and the requirements for new projects have led us to develop a standardized hardware and software platform called IRFU EPICS Environment based on microTCA.4 and MRF timing system. This paper describes the advantages of the combination of these recent technologies and the local control system architectures in progress for the SARAF project

    Status of the SARAF-Phase2 Control System

    No full text
    International audienceSNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 Mev deuteron and proton beams and also closely to the control system. CEA is in charge of the Control System (including cabinets) design and implementation for the Injector (upgrade), MEBT and Super Conducting Linac made up of 4 cryomodules hosting HWR cavities and solenoid packages. This paper gives a detailed presentation of the control system architecture from hardware and EPICS software points of view. The hardware standardization relies on MTCA.4 that is used for LLRF, BPM, BLM and FC controls and on Siemens PLC 1500 series for vacuum, cryogenics and interlock. CEA IRFU EPICS Environment (IEE) platform is used for the whole accelerator. IEE is based on virtual machines and our MTCA.4 solutions and enables us to have homogenous EPICS modules. It also provides a development and production workflow. SNRC has integrated IEE into a new IT network based on advanced technology. The commissioning is planned to start late summer 2021

    The SARAF-LINAC Project 2018 Status

    No full text
    International audienceSNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC Solenoid-Package are under construction and their test stands construction or adaptation is in progress at Saclay. Meanwhile, the cryomodules and the global system just passed their Critical Design Reviews. This paper presents the status of the SARAF-LINAC Project at April 2018
    corecore