180 research outputs found

    Persistent and highly contrasting biological patterns in the southwestern sector of the Atlantic Ocean: relating local circulation to phytoplankton pigment biomass

    Get PDF
    Primary production in the Southern Ocean (SO) is believed to be mostly iron limited; despite the high macronutrient content of waters transported by the Antarctic Circumpolar Current, the SO is considered a High Nutrient Low Chlorophyll region. However, ocean color imagery shows a variable and patchy environment, where sharp chlorophyll concentration (chl-a) gradients separate highly productive regions, which are found mostly downstream from islands and along coastal shelves, from the less productive ones, where pigment biomass remains low. In the western sector of the Atlantic SO, an intense and long-lasting phytoplankton bloom is found northwest of the Island of South Georgia, while very low chl-a are persistently measured southwest of the Shackleton Transverse Ridge (STR), in the southern Drake Passage. In both cases, local circulation, which is steered by bottom topography, plays a major role in controlling biogeochemistry and thus the distribution and intensity of chl-a. By combining surface drifter trajectories with satellite based measurements of sea surface height and ocean color, we relate local flow regimes to the observed pigment biomass patterns. Basing our analysis on 13 years of SeaWiFS imagery, the intense and long-lasting phytoplankton bloom developing northwest of South Georgia appears to be recurrent in time with little inter-annual variability; furthermore,our results show how the bloom is clearly confined to the area enclosed by the cyclonic circulation flowing along the periphery of the South Georgia Basin (SGB). Here, current velocities appear to gradually decrease towards the center of the basin possibly favoring the accumulation of shelf-derived iron, and thus the growth of phytoplankton cells. Southwest of the STR, the available ocean color time-series highlights an area with very low productivity values, which can be detected yearly and with little inter-annual variability. This region is adjacent to the more productive one found to the northeast of the ridge, above the Ona Basin. The former appears to be related to the intense Shackleton Jet flowing along the ridge, while the latter to the calmer cyclonic circulation located above the Ona Basin; just above the STR lies the area where maximum chl-a gradients can be measured. Absolute dynamic topography values retrieved for the two regions together with surface drifter trajectories, suggest a clear spatial and temporal correspondence between local circulation patterns and those of surface chl-a; furthermore, the AVISO time-series confirms the low inter-annual variability of the two previously described flow patterns. We argue how similarly above the STR and the SGB, the presence of the cyclonic circulation acts as a precondition to the observed higher chl-a. In both cases, nutrient (i.e. iron) rich waters may be entrained in the cyclone, and separated from those lying outside its borders. Similar observations have been made in the Crozet and the Kerguelen regions

    Ocean Data View

    Get PDF
    Ocean Data View (ODV) is a software package for the interactive exploration, analysis and visualization of oceanographic and other geo-referenced profile, time-series, trajectory or sequence data. ODV runs on Windows, macOS, Linux, and UNIX (Solaris, Irix, AIX) systems. ODV data and configuration files are platform-independent and can be exchanged between different systems. ODV can display original data points or gridded fields based on the original data. ODV has two fast weighted-averaging gridding algorithms as well as the advanced DIVA gridding software built-in. Gridded fields can be color-shaded and/or contoured. ODV supports five different map projections and can be used to produce high quality cruise maps. ODV graphics output can be send directly to printers or may be exported to PostScript, gif, png, or jpg files. The resolution of exported graphics files is specified by the user and not limited by the pixel resolution of the screen. ODV is available for download at https://odv.awi.de/

    Quantifying He fluxes from the mantle using multi-tracer data assimilation

    Get PDF
    A global, coarse-resolution ocean model previously fitted to geostrophic shear estimates and to data of 10 hydrographic parameters and tracers has been used to simulate the 3He and 4He distributions resulting from the release of mantle helium from mid-ocean ridges. The model is in very good agreement with 14C and chlorofluorocarbon data and has realistic global ocean overturning strength as well as water mass formation and transport rates. It is found that previously published global mantle 3He fluxes are too high by a factor of about 2. In the model, optimal agreement of modelled δ3He with data is achieved for a global flux of 450 ± 50 mol 3He yr−1. The formulation of He source strengths proportional to ridge spreading rates appears compatible with data. A model/data misfit analysis shows significant and large-scale δ3He underestimation in the southwestern Pacific centred over the Lau Backarc Basin (approx. 179° W/20° S). These misfits disappear in a set-up with 30 of the 450 mol yr−1 global total 3He flux released in the Lau Basin over a depth range between 1250 and 2500 m. Such He flux contributions are missing in present mantle He source compilations. Hydrothermal fluxes of other trace elements and isotopes (TEI) can be calculated from He fluxes on the basis of TEI : He ratios measured close to the sources

    SalaciaML: A Deep Learning Approach for Supporting Ocean Data Quality Control

    Get PDF
    We present a skillful deep learning algorithm for supporting quality control of ocean temperature measurements, which we name SalaciaML according to Salacia the roman goddess of sea waters. Classical attempts to algorithmically support and partly automate the quality control of ocean data profiles are especially helpful for the gross errors in the data. Range filters, spike detection, and data distribution checks remove reliably the outliers and errors in the data, still wrong classifications occur. Various automated quality control procedures have been successfully implemented within the main international and EU marine data infrastructures (WOD, CMEMS, IQuOD, SDN) but their resulting data products are still containing data anomalies, bad data flagged as good and vice-versa. They also include visual inspection of suspicious measurements, which is a time consuming activity, especially if the number of suspicious data detected is large. A deep learning approach could highly improve our capabilities to quality assess big data collections and contemporary reducing the human effort. Our algorithm SalaciaML is meant to complement classical automated quality control procedures in supporting the time consuming visually inspection of data anomalies by quality control experts. As a first approach we applied the algorithm to a large dataset from the Mediterranean Sea. SalaciaML has been able to detect correctly more than 90% of all good and/or bad data in 11 out of 16 Mediterranean regions

    Dissolved organic matter in the ocean : a controversy stimulates new insights

    Get PDF
    Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 202-211.Containing as much carbon as the atmosphere, marine dissolved organic matter is one of Earth’s major carbon reservoirs. With invigoration of scientific inquiries into the global carbon cycle, our ignorance of its role in ocean biogeochemistry became untenable. Rapid mobilization of relevant research two decades ago required the community to overcome early false leads, but subsequent progress in examining the global dynamics of this material has been steady. Continuous improvements in analytical skill coupled with global ocean hydrographic survey opportunities resulted in the generation of thousands of measurements throughout the major ocean basins. Here, observations and model results provide new insights into the large-scale variability of dissolved organic carbon, its contribution to the biological pump, and its deep ocean sinks.The US National Science Foundation supported this work under grants OCE 0752972 to DAH and CAC, OCE 0751733 and BIO 0792384 to DJR. The Gordon and Betty Moore Foundation also provided support to DJR

    A meridional 14C and 39Ar section in northeast Atlantic deep water

    Get PDF
    14C, 39Ar, and complementary hydrographic and nutrient data are presented for deep water below 2500 m depth, from stations along a meridional section (8°S to 45°N) through the Romanche Trench and along the deep northeast Atlantic basins (F/S Meteor, cruise 56, leg 5). The large-scale 14C distribution along the section is resolved at the 14C data precision of ±2‰. Bottom water Δ14C decreases by 6‰ from the equator to 45°N, and farther up there is a weak Δ14C minimum (−123‰) over much of the section. The 14C data are interpreted as giving a turnover time of about 30 years for the waters below the depth of the 14C minimum (∼4250 m). It is found that water of 1.50±0.05°C potential temperature enters the East Atlantic from the west through the Romanche Trench (sill depth about 4000 m), and a preliminary value for the inflow rate of 3.6×106 m3/s is deduced. This rate greatly exceeds estimated deep inflow rates through the Vema fracture zone or across the northern boundary of the East Atlantic. 39Ar data that cover an entire deep-ocean circulation system are presented for the first time. The observed 14C and 39Ar distributions are mutually consistent. Transit times from the source regions to the equator for water from northern and southern deepwater sources are estimated to be about 170 and 105 years, respectively, and the 39Ar concentration of young Antarctic Bottom Water is deduced as 60±7% modern. The 39Ar-14C correlation in the ocean appears to be affected by mixing of waters of different age and by more efficient raising of 39Ar in the deepwater formation processes

    The GEOTRACES Intermediate Data Product 2017

    Get PDF
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEls) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-sigma data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes
    • …
    corecore