5,638 research outputs found

    Program for sea level test firing of rocket engines final report, 1 sep. 1964 - 1 feb. 1965

    Get PDF
    Bipropellant rocket engines with radiation cooled thrust combustion chambers of molybdenum fired for testing and material evaluatio

    Uniaxial magnetocrystalline anisotropy in CaRuO3{\rm CaRuO_3}

    Full text link
    CaRuO3{\rm CaRuO_3} is a paramagnetic metal and since its low temperature resistivity is described by ρ=ρ0+ATγ\rho=\rho_0+AT^\gamma with γ1.5\gamma \sim 1.5, it is also considered a non-Fermi liquid (NFL) metal. We have performed extensive magnetoresistance and Hall effect measurements of untwinned epitaxial films of CaRuO3{\rm CaRuO_3}. These measurements reveal that CaRuO3{\rm CaRuO_3} exhibits uniaxial magnetocrystalline anisotropy. In addition, the low-temperature NFL behavior is most effectively suppressed when a magnetic field is applied along the easy axis, suggesting that critical spin fluctuations, possibly due to proximity of a quantum critical phase transition, are related to the NFL behavior.Comment: 7 figure

    Paramagnetic anisotropic magnetoresistance in thin films of SrRuO3

    Full text link
    SrRuO3 is an itinerant ferromagnet and in its thin film form when grown on miscut SrTiO3 it has Tc of ~ 150 K and strong uniaxial anisotropy. We measured both the Hall effect and the magnetoresistance (MR) of the films as a function of the angle between the applied field and the normal to the films at temperatures above Tc. We extracted the extraordinary Hall effect that is proportional to the perpendicular component of the magnetization and thus the MR for each angle of the applied field could be correlated with the magnitude and orientation of the induced magnetization. We successfully fit the MR data with a second order magnetization expansion, which indicates large anisotropic MR in the paramagnetic state. The extremum values of resistivity are not obtained for currents parallel or perpendicular to the magnetization, probably due to the crystal symmetry.Comment: 3 pages, 3 figure

    Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms

    Full text link
    Protons accelerated to relativistic energies by transient solar and interplanetary phenomena caused a ground-level cosmic ray enhancement on 14 July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux directly and ground-based observatories measured the secondary responses to higher energy protons. We have modelled the arrival of these relativistic protons at Earth using a technique which deduces the spectrum, arrival direction and anisotropy of the high-energy protons that produce increased responses in neutron monitors. To investigate the acceleration processes involved we have employed theoretical shock and stochastic acceleration spectral forms in our fits to spacecraft and neutron monitor data. During the rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We propose that at least two acceleration processes were responsible for the production of relativistic protons during the Bastille Day solar event: (1) protons were accelerated to relativistic energies by a shock, presumably a coronal mass ejection (CME). (2) protons were also accelerated to relativistic energies by stochastic processes initiated by magnetohydrodynamic (MHD) turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical Journal, January, 200

    High transport currents in mechanically reinforced MgB2 wires

    Full text link
    We prepared and characterized monofilamentary MgB2 wires with a mechanically reinforced composite sheath of Ta(Nb)/Cu/steel, which leads to dense filaments and correspondingly high transport currents up to Jc = 10^5 A/cm^2 at 4.2 K, self field. The reproducibility of the measured transport currents was excellent and not depending on the wire diameter. Using different precursors, commercial reacted powder or an unreacted Mg/B powder mixture, a strong influence on the pinning behaviour and the irreversibility field was observed. The critical transport current density showed a nearly linear temperature dependency for all wires being still 52 kA/cm^2 at 20 K and 23 kA/cm^2 at 30 K. Detailed data for Jc(B,T) and Tc(B) were measured.Comment: 21 pages, 13 figures, revised version, to be published in Supercond. Sci. Techno

    Band gap bowing of binary alloys: Experimental results compared to theoretical tight-binding supercell calculations for CdZnSe

    Full text link
    Compound semiconductor alloys of the type ABC find widespread applications as their electronic bulk band gap varies continuously with x, and therefore a tayloring of the energy gap is possible by variation of the concentration. We model the electronic properties of such semiconductor alloys by a multiband tight-binding model on a finite ensemble of supercells and determine the band gap of the alloy. This treatment allows for an intrinsic reproduction of band bowing effects as a function of the concentration x and is exact in the alloy-induced disorder. In the present paper, we concentrate on bulk CdZnSe as a well-defined model system and give a careful analysis on the proper choice of the basis set and supercell size, as well as on the necessary number of realizations. The results are compared to experimental results obtained from ellipsometric measurements of CdZnSe layers prepared by molecular beam epitaxy (MBE) and photoluminescence (PL) measurements on catalytically grown CdZnSe nanowires reported in the literature.Comment: 7 pages, 6 figure

    Compressive damage modeling of fiber-reinforced composite laminates using 2D higher-order layer-wise models

    Get PDF
    A refined progressive damage analysis of fiber-reinforced laminated composites subjected to compressive loads is presented here. The numerical analysis exploits higher-order theories developed using the Carrera Unified Formulation, specifically 2D plate theories with Lagrange polynomials to enhance the kinematic approximation through each ply’s thickness resulting in a layer-wise structural model. The CODAM2 material model, based on continuum damage mechanics, governs the intralaminar composite damage. The Hashin criteria and the crack-band approach provide failure initiation and propagation, respectively. Fiber micro-buckling and kinking are taken into account via the use of nonlinear post-peak softening models. It is shown that linear-brittle stress-strain softening is effective for accurate compressive strength predictions. A series of numerical assessments on coupon level composite laminates is carried out to verify the proposed numerical framework while its validation is demonstrated by successfully applying the numerical tool to test cases for which experimental data is available from the literature. Various through-the-thickness structural models are evaluated to provide insights for proper modeling. Numerical assessments considered quasi-isotropic laminates, the compressive strength, and size-effects under brittle fracture of notched laminates, and progressive damage characteristics due to stable crack growth in compact compression tests. The results show the possibility of using coarser meshes than those used in standard FEM approaches as the accuracy of predictions is preserved through the use of higher-order structural theories
    corecore