29 research outputs found

    Stability from Structure: Metabolic Networks Are Unlike Other Biological Networks

    Get PDF
    In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks

    Correction to: A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF

    New insights into the genetic etiology of Alzheimer's disease and related dementias.

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Genetics and not shared environment explains familial resemblance in adult metabolomics data

    Get PDF
    Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term 'metabolomics' refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and 1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability distribution was populated by 5 of the 11 investigated chemical classes. In this quartile, metabolites of the class lipoprotein were significantly overrepresented, whereas metabolites of classes glycerophospholipids and glycerolipids were significantly underrepresented.Analytical BioScience

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) epsilon 4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE epsilon 2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity

    Computational analysis of high-throughput material screens

    Full text link
    peer reviewe

    A comparison of genetic network models

    No full text
    The inference of genetic interactions from measured expression data is one of the most challenging tasks of modern functional genomics. When successful, the learned network of regulatory interactions yields a wealth of useful information. An inferred genetic network contains information about the pathway to which a gene belongs and which genes it interacts with. Furthermore, it explains the gene's function in terms of how it influences other genes and indicates which genes are pathway initiators and therefore potential drug targets. Obviously, such wealth comes at a price and that of genetic network modeling is that it is an extremely complex task. Therefore, it is necessary to develop sophisticated computational tools that are able to extract relevant information from a limited set of microarray measurements and integrate this with different information sources, to come up with reliable hypotheses of a genetic regulatory network. Thus far, a multitude of modeling approaches has been proposed for discovering genetic networks. However, it is unclear what the advantages and disadvantages of each of the different approaches are and how their results can be compared. In this review, genetic network models are put in a historical perspective that explains why certain models were introduced. Various modeling assumptions and their consequences are also highlighted. In addition, an overview of the principal differences and similarities between the approaches is given by considering the qualitative properties of the chosen models and their learning strategies. In pharmacogenomics and related areas, a lot of research is directed towards discovering, understanding and/or controlling the outcome of some particular biological pathway. Numerous examples exist where the manipulation of a key enzyme in such a pathway did not lead to the desired effect We know that the structure of complex genetic and biochemical networks lies hidden in the sequence information of our DNA but it is far from trivial to predict gene expression from the sequence code alone. The current availability of microarray measurements of thousands of gene expression levels during the course of an experiment or after the knockout of a gene provides a wealth of complementary information that may be exploited to unravel the complex interplay between genes. It now becomes possible to start answering some of the truly challenging questions in systems biology. For example, is it possible to model these genetic interactions as a large network of interacting elements and can these interactions be effectively learned from measured expression data? Since Kauffman Although the behavior and properties of artificial networks match the observations made in real biological systems well, the field of genetic network modeling has yet to reach its full maturity. The automatic discovery of genetic networks from expression data alone is far from trivial because of the combinatorial nature of the problem and the poor information content of 1 For reasons of brevity, the authors consistently refer only to the first author of each reference
    corecore