20 research outputs found

    Regioselective functionalization of tetrabromophenanthroline-ruthenium complexes

    Get PDF
    Structural, photophysical and -chemical characterisation and reactivity of a novel polypyridyl ruthenium complex based on 3,5,6,8-tetra-bromophenanthroline are discussed. Signal storage at a molecular level is great challenge for chemistry.1 The possibility of connecting different functionalities selectively to one ligand of a metal complex may open the route towards higher integrated molecular units capable of processing various external stimuli in a predesignated order. The implementation of this concept demands ligands with a multitude of potential connecting groups which can selectively be transformed.2 3-bromo- and 3,8-dibromophenanthrolines have proved useful for the preparation of mononuclear3 and multiheteronuclear complexes.4 These systems have found applications ranging from DNA photoprobes5 to metalloligands in catalysis.6 A very useful feature of this bromophenanthroline ruthenium complexes is their susceptibility towards nucleophilic aromatic substitution which is very well established

    Reactivity Studies of [(thf)<sub>2</sub>Mg{μ-C(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C(CH<sub>3</sub>)<sub>2</sub>}]<sub>2</sub>: Scrambling Reactions and Diverse Reactions with Dichlorophenylphosphane

    No full text
    In THF solution [{(thf)<sub>2</sub>Mg­{μ-C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>C}}<sub>2</sub>] (<b>1</b>) exchanges the alkanediide ligand with [{(thf)<sub>2</sub>Mg­{μ-CH<sub>2</sub>)<sub>5</sub>}}<sub>2</sub>] in an equilibrium leading to the formation of [{(thf)<sub>2</sub>Mg}<sub>2</sub>{μ-C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C­(CH<sub>3</sub>)<sub>2</sub>}­{μ-(CH<sub>2</sub>)<sub>5</sub>}] (<b>2</b>). Depending on the crystallization temperature, homoleptic <b>1</b> or heteroleptic <b>2</b> crystallizes from THF solutions, verifying a temperature-dependent Schlenk equilibrium. Irradiation of a solution of <b>1</b> in [D<sub>8</sub>]­THF with UV light yields magnesium hydride and alkene via a β-hydride elimination reaction. In a metathetical approach dichlorophenylphosphane reacts with <b>1</b> in THF to give the intermediate “PhP­(Cl)­{C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>CMgCl” (<b>3-MgCl</b>), which forms three subsequent products. In order to ease handling and characterization of these compounds, hydrolysis and oxidation with sulfur has been performed. This product mixture was separated by column chromatography, yielding the chlorophosphane sulfide [Ph­(S)­P­(Cl)­{C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>CH)}] (<b>3-S</b>), the cyclic phosphane sulfide [Ph­(S)­P­{C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>C)}] (<b>4-S</b>), and the cyclic 1,1-diphosphane disulfide [{(Ph­(S)­P}<sub>2</sub>{μ-C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>C}] (<b>6-S<sub>2</sub></b>). Furthermore, traces of the acyclic 1,1-diphosphane disulfides [{PhP­(S)­(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>CH­(CH<sub>3</sub>)<sub>2</sub>)}­{PhP­(S)­(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C­(CH<sub>3</sub>)­(CH<sub>2</sub>)}] (<b>8-S<sub>2</sub></b>) and <i>meso</i>-[{Ph­(S)­P­(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>CH)}<sub>2</sub>] (<b>7-S<sub>2</sub></b>) have also been isolated. Compounds <b>6</b>–<b>8</b> represent the phosphorus-containing products of indirect Grignard reductions

    Reactivity Studies of [(thf)<sub>2</sub>Mg{μ-C(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C(CH<sub>3</sub>)<sub>2</sub>}]<sub>2</sub>: Scrambling Reactions and Diverse Reactions with Dichlorophenylphosphane

    No full text
    In THF solution [{(thf)<sub>2</sub>Mg­{μ-C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>C}}<sub>2</sub>] (<b>1</b>) exchanges the alkanediide ligand with [{(thf)<sub>2</sub>Mg­{μ-CH<sub>2</sub>)<sub>5</sub>}}<sub>2</sub>] in an equilibrium leading to the formation of [{(thf)<sub>2</sub>Mg}<sub>2</sub>{μ-C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C­(CH<sub>3</sub>)<sub>2</sub>}­{μ-(CH<sub>2</sub>)<sub>5</sub>}] (<b>2</b>). Depending on the crystallization temperature, homoleptic <b>1</b> or heteroleptic <b>2</b> crystallizes from THF solutions, verifying a temperature-dependent Schlenk equilibrium. Irradiation of a solution of <b>1</b> in [D<sub>8</sub>]­THF with UV light yields magnesium hydride and alkene via a β-hydride elimination reaction. In a metathetical approach dichlorophenylphosphane reacts with <b>1</b> in THF to give the intermediate “PhP­(Cl)­{C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>CMgCl” (<b>3-MgCl</b>), which forms three subsequent products. In order to ease handling and characterization of these compounds, hydrolysis and oxidation with sulfur has been performed. This product mixture was separated by column chromatography, yielding the chlorophosphane sulfide [Ph­(S)­P­(Cl)­{C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>CH)}] (<b>3-S</b>), the cyclic phosphane sulfide [Ph­(S)­P­{C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>C)}] (<b>4-S</b>), and the cyclic 1,1-diphosphane disulfide [{(Ph­(S)­P}<sub>2</sub>{μ-C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>C}] (<b>6-S<sub>2</sub></b>). Furthermore, traces of the acyclic 1,1-diphosphane disulfides [{PhP­(S)­(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>CH­(CH<sub>3</sub>)<sub>2</sub>)}­{PhP­(S)­(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C­(CH<sub>3</sub>)­(CH<sub>2</sub>)}] (<b>8-S<sub>2</sub></b>) and <i>meso</i>-[{Ph­(S)­P­(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>CH)}<sub>2</sub>] (<b>7-S<sub>2</sub></b>) have also been isolated. Compounds <b>6</b>–<b>8</b> represent the phosphorus-containing products of indirect Grignard reductions

    Synthesis, Crystal Structures, and Solution Behavior of Organomagnesium Derivatives of Alkane-1,4-diide as Well as -1,5-diide

    No full text
    The organomagnesium complexes [(thf)<sub>2</sub>Mg­(μ-C<sub>5</sub>H<sub>10</sub>)]<sub>2</sub> (<b>1</b>), [(thf)<sub>2</sub>Mg­(μ-C<sub>4</sub>H<sub>8</sub>)]<sub>∞</sub> (<b>2</b>), and [(thf)<sub>2</sub>Mg­(μ-(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C­(CH<sub>3</sub>)<sub>2</sub>)]<sub>2</sub> (<b>3</b>) were prepared via direct synthesis from magnesium turnings and appropriate dichloroalkanes in tetrahydrofuran (THF). The aggregation degree in the solid state depends on the nature of the alkanediide. The THF solution of <b>3</b> shows a temperature-dependent equilibrium. The reactions of MgCl<sub>2</sub>(thf)<sub>1.5</sub> with 1,4-dilithiobutane yield the lithium magnesiates [Li­(thf)<sub>4</sub>]<sub>2</sub>[Mg<sub>3</sub>(C<sub>4</sub>H<sub>8</sub>)<sub>4</sub>] (<b>4</b>) and [{(tmeda)­Li}<sub>2</sub>Mg­(C<sub>4</sub>H<sub>8</sub>)<sub>2</sub>] (<b>5</b>) depending on the applied stoichiometry. The addition reaction of Ph<sub>2</sub>Mg­(diox) (1,4-dioxane = diox) with 1,4-dilithiobutane leads to the formation of the heteroleptic magnesiate [{(tmeda)­Li}<sub>2</sub>MgPh<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>)] (<b>6</b>), which shows in THF solution a ligand exchange (Schlenk-type) equilibrium with the homoleptic derivatives [{(thf)<sub>2</sub>Li}<sub>2</sub>Mg­(C<sub>4</sub>H<sub>8</sub>)<sub>2</sub>] and [{(thf)<sub>2</sub>Li}<sub>2</sub>MgPh<sub>4</sub>]

    Synthesis, Crystal Structures, and Solution Behavior of Organomagnesium Derivatives of Alkane-1,4-diide as Well as -1,5-diide

    No full text
    The organomagnesium complexes [(thf)<sub>2</sub>Mg­(μ-C<sub>5</sub>H<sub>10</sub>)]<sub>2</sub> (<b>1</b>), [(thf)<sub>2</sub>Mg­(μ-C<sub>4</sub>H<sub>8</sub>)]<sub>∞</sub> (<b>2</b>), and [(thf)<sub>2</sub>Mg­(μ-(C­(CH<sub>3</sub>)<sub>2</sub>C<sub>2</sub>H<sub>4</sub>C­(CH<sub>3</sub>)<sub>2</sub>)]<sub>2</sub> (<b>3</b>) were prepared via direct synthesis from magnesium turnings and appropriate dichloroalkanes in tetrahydrofuran (THF). The aggregation degree in the solid state depends on the nature of the alkanediide. The THF solution of <b>3</b> shows a temperature-dependent equilibrium. The reactions of MgCl<sub>2</sub>(thf)<sub>1.5</sub> with 1,4-dilithiobutane yield the lithium magnesiates [Li­(thf)<sub>4</sub>]<sub>2</sub>[Mg<sub>3</sub>(C<sub>4</sub>H<sub>8</sub>)<sub>4</sub>] (<b>4</b>) and [{(tmeda)­Li}<sub>2</sub>Mg­(C<sub>4</sub>H<sub>8</sub>)<sub>2</sub>] (<b>5</b>) depending on the applied stoichiometry. The addition reaction of Ph<sub>2</sub>Mg­(diox) (1,4-dioxane = diox) with 1,4-dilithiobutane leads to the formation of the heteroleptic magnesiate [{(tmeda)­Li}<sub>2</sub>MgPh<sub>2</sub>(C<sub>4</sub>H<sub>8</sub>)] (<b>6</b>), which shows in THF solution a ligand exchange (Schlenk-type) equilibrium with the homoleptic derivatives [{(thf)<sub>2</sub>Li}<sub>2</sub>Mg­(C<sub>4</sub>H<sub>8</sub>)<sub>2</sub>] and [{(thf)<sub>2</sub>Li}<sub>2</sub>MgPh<sub>4</sub>]
    corecore