126 research outputs found

    Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations

    Get PDF
    © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. Several models have been advanced to explain the multiple stellar populations observed in globular clusters (GCs). Most models necessitate a large initial population of unenriched stars that provide the pollution for an enriched population, and which are subsequently lost from the cluster. This scenario generally requires clusters to lose > 90 per cent of their birth mass. We use a suite of 25 cosmological zoom-in simulations of present-day Milky Way mass galaxies from the E-MOSAICS project to study whether dynamical disruption by evaporation and tidal shocking provides the necessary mass-loss. We find that GCs with present-day masses M > 105M⊙were only 2-4 times more massive at birth, in conflict with the requirements of the proposed models. This factor correlates weakly with metallicity, gas pressure at birth, or galactocentric radius, but increases towards lower GC masses. To reconcile our results with observational data, either an unphysically steep cluster mass-size relation must be assumed, or the initial enriched fractions must be similar to their present values. We provide the required relation between the initial enriched fraction and cluster mass. Dynamical cluster mass-loss cannot reproduce the high observed enriched fractions nor their trend with cluster mass

    The [α/Fe]-[Fe/H] relation in the E-MOSAICS simulations: its connection to the birth place of globular clusters and the fraction of globular cluster field stars in the bulge

    Get PDF
    The {\alpha}-element abundances of the globular cluster (GC) and field star populations of galaxies encode information about the formation of each of these components. We use the E-MOSAICS cosmological simulations of ~L* galaxies and their GCs to investigate the [{\alpha}/Fe]-[Fe/H] distribution of field stars and GCs in 25 Milky Way-mass galaxies. The [{\alpha}/Fe]-[Fe/H] distribution go GCs largely follows that of the field stars and can also therefore be used as tracers of the [{\alpha}/Fe]-[Fe/H] evolution of the galaxy. Due to the difference in their star formation histories, GCs associated with stellar streams (i.e. which have recently been accreted) have systematically lower [{\alpha}/Fe] at fixed [Fe/H]. Therefore, if a GC is observed to have low [{\alpha}/Fe] for its [Fe/H] there is an increased probability that this GC was accreted recently alongside a dwarf galaxy. There is a wide range of shapes for the field star [{\alpha}/Fe]-[Fe/H] distribution, with a notable subset of galaxies exhibiting bimodal distributions, in which the high [{\alpha}/Fe] sequence is mostly comprised of stars in the bulge, a high fraction of which are from disrupted GCs. We calculate the contribution of disrupted GCs to the bulge component of the 25 simulated galaxies and find values between 0.3-14 per cent, where this fraction correlates with the galaxy's formation time. The upper range of these fractions is compatible with observationally-inferred measurements for the Milky Way, suggesting that in this respect the Milky Way is not typical of L* galaxies, having experienced a phase of unusually rapid growth at early times

    The origin of the 'blue tilt' of globular cluster populations in the E-MOSAICS simulations

    Get PDF
    The metal-poor sub-population of globular cluster (GC) systems exhibits a correlation between the GC average colour and luminosity, especially in those systems associated with massive elliptical galaxies. More luminous (more massive) GCs are typically redder and hence more metal-rich. This 'blue tilt' is often interpreted as a mass-metallicity relation stemming from GC self-enrichment, whereby more massive GCs retain a greater fraction of the enriched gas ejected by their evolving stars, fostering the formation of more metal-rich secondary generations. We examine the E-MOSAICS simulations of the formation and evolution of galaxies and their GC populations, and find that their GCs exhibit a colour-luminosity relation similar to that observed in local galaxies, without the need to invoke mass-dependent self-enrichment. We find that the blue tilt is most appropriately interpreted as a dearth of massive, metal-poor GCs: the formation of massive GCs requires high interstellar gas surface densities, conditions that are most commonly fostered by the most massive, and hence most metal rich, galaxies, at the peak epoch of GC formation. The blue tilt is therefore a consequence of the intimate coupling between the small-scale physics of GC formation and the evolving properties of interstellar gas hosted by hierarchically-assembling galaxies

    Where did the globular clusters of the Milky Way form? Insights from the E-MOSAICS simulations

    Get PDF
    Globular clusters (GCs) are typically old, with most having formed at z >~ 2. This makes understanding their birth environments difficult, as they are typically too distant to observe with sufficient angular resolution to resolve GC birth sites. Using 25 cosmological zoom-in simulations of Milky Way-like galaxies from the E-MOSAICS project, with physically-motivated models for star formation, feedback, and the formation, evolution, and disruption of GCs, we identify the birth environments of present-day GCs. We find roughly half of GCs in these galaxies formed in-situ (52.0 +/- 1.0 per cent) between z ~ 2 - 4, in turbulent, high-pressure discs fed by gas that was accreted without ever being strongly heated through a virial shock or feedback. A minority of GCs form during mergers (12.6 +/- 0.6 per cent in major mergers, and 7.2 +/- 0.5 per cent in minor mergers), but we find that mergers are important for preserving the GCs seen today by ejecting them from their natal, high density interstellar medium (ISM), where proto-GCs are rapidly destroyed due to tidal shocks from ISM substructure. This chaotic history of hierarchical galaxy assembly acts to mix the spatial and kinematic distribution of GCs formed through different channels, making it difficult to use observable GC properties to distinguish GCs formed in mergers from ones formed by smooth accretion, and similarly GCs formed in-situ from those formed ex-situ. These results suggest a simple picture of GC formation, in which GCs are a natural outcome of normal star formation in the typical, gas-rich galaxies that are the progenitors of present-day galaxies

    The formation and assembly history of the Milky Way revealed by its globular cluster population

    Get PDF
    We use the age–metallicity distribution of 96 Galactic globular clusters (GCs) to infer the formation and assembly history of the Milky Way (MW), culminating in the reconstruction of its merger tree. Based on a quantitative comparison of the Galactic GC population to the 25 cosmological zoom-in simulations of MW-mass galaxies in the E-MOSAICS project, which self-consistently model the formation and evolution of GC populations in a cosmological context, we find that the MW assembled quickly for its mass, reaching {25, 50} per cent of its present-day halo mass already at z = {3, 1.5} and half of its present-day stellar mass at z = 1.2. We reconstruct the MW’s merger tree from its GC age–metallicity distribution, inferring the number of mergers as a function of mass ratio and redshift. These statistics place the MW’s assembly rate among the 72th–94th percentile of the E-MOSAICS galaxies, whereas its integrated properties (e.g. number of mergers, halo concentration) match the median of the simulations. We conclude that the MW has experienced no major mergers (mass ratios >1:4) since z ∼ 4, sharpening previous limits of z ∼ 2. We identify three massive satellite progenitors and constrain their mass growth and enrichment histories. Two are proposed to correspond to Sagittarius (a few 108 M⊙) and the GCs formerly associated with Canis Major (⁠∼109M⊙). The third satellite has no known associated relic and was likely accreted between z = 0.6 and 1.3. We name this enigmatic galaxy Kraken and propose that it is the most massive satellite (⁠M ∗ ∼2×10 9 M ⊙) ever accreted by the MW. We predict that ∼40 per cent of the Galactic GCs formed ex situ (in galaxies with masses M* = 2 × 107–2×109M⊙), with 6 ± 1 being former nuclear clusters
    corecore