5,340 research outputs found
On the steady states of the spherically symmetric Einstein-Vlasov system
Using both numerical and analytical tools we study various features of
static, spherically symmetric solutions of the Einstein-Vlasov system. In
particular, we investigate the possible shapes of their mass-energy density and
find that they can be multi-peaked, we give numerical evidence and a partial
proof for the conjecture that the Buchdahl inequality , the quasi-local mass, holds for all such steady states--both
isotropic {\em and} anisotropic--, and we give numerical evidence and a partial
proof for the conjecture that for any given microscopic equation of state--both
isotropic {\em and} anisotropic--the resulting one-parameter family of static
solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe
The Validity of the Super-Particle Approximation during Planetesimal Formation
The formation mechanism of planetesimals in protoplanetary discs is hotly
debated. Currently, the favoured model involves the accumulation of meter-sized
objects within a turbulent disc, followed by a phase of gravitational
instability. At best one can simulate a few million particles numerically as
opposed to the several trillion meter-sized particles expected in a real
protoplanetary disc. Therefore, single particles are often used as
super-particles to represent a distribution of many smaller particles. It is
assumed that small scale phenomena do not play a role and particle collisions
are not modeled. The super-particle approximation can only be valid in a
collisionless or strongly collisional system, however, in many recent numerical
simulations this is not the case.
In this work we present new results from numerical simulations of
planetesimal formation via gravitational instability. A scaled system is
studied that does not require the use of super-particles. We find that the
scaled particles can be used to model the initial phases of clumping if the
properties of the scaled particles are chosen such that all important
timescales in the system are equivalent to what is expected in a real
protoplanetary disc. Constraints are given for the number of particles needed
in order to achieve numerical convergence.
We compare this new method to the standard super-particle approach. We find
that the super-particle approach produces unreliable results that depend on
artifacts such as the gravitational softening in both the requirement for
gravitational collapse and the resulting clump statistics. Our results show
that short range interactions (collisions) have to be modelled properly.Comment: 10 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
Existence of axially symmetric static solutions of the Einstein-Vlasov system
We prove the existence of static, asymptotically flat non-vacuum spacetimes
with axial symmetry where the matter is modeled as a collisionless gas. The
axially symmetric solutions of the resulting Einstein-Vlasov system are
obtained via the implicit function theorem by perturbing off a suitable
spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page
Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau
A recent ALMA image revealed several concentric gaps in the protoplanetary
disk surrounding the young star HL Tau. We consider the hypothesis that these
gaps are carved by planets, and present a general framework for understanding
the dynamical stability of such systems over typical disk lifetimes, providing
estimates for the maximum planetary masses. We collect these easily evaluated
constraints into a workflow that can help guide the design and interpretation
of new observational campaigns and numerical simulations of gap opening in such
systems. We argue that the locations of resonances should be significantly
shifted in massive disks like HL Tau, and that theoretical uncertainties in the
exact offset, together with observational errors, imply a large uncertainty in
the dynamical state and stability in such disks. This presents an important
barrier to using systems like HL Tau as a proxy for the initial conditions
following planet formation. An important observational avenue to breaking this
degeneracy is to search for eccentric gaps, which could implicate resonantly
interacting planets. Unfortunately, massive disks like HL Tau should induce
swift pericenter precession that would smear out any such eccentric features of
planetary origin. This motivates pushing toward more typical, less massive
disks. For a nominal non-resonant model of the HL Tau system with five planets,
we find a maximum mass for the outer three bodies of approximately 2 Neptune
masses. In a resonant configuration, these planets can reach at least the mass
of Saturn. The inner two planets' masses are unconstrained by dynamical
stability arguments.Comment: Accepted in ApJ. 16 pages 8 figure
Spherically symmetric steady states of galactic dynamics in scalar gravity
The kinetic motion of the stars of a galaxy is considered within the
framework of a relativistic scalar theory of gravitation. This model, even
though unphysical, may represent a good laboratory where to study in a
rigorous, mathematical way those problems, like the influence of the
gravitational radiation on the dynamics, which are still beyond our present
understanding of the physical model represented by the Einstein--Vlasov system.
The present paper is devoted to derive the equations of the model and to prove
the existence of spherically symmetric equilibria with finite radius.Comment: 13 pages, mistypos correcte
Enterprise Social Benefit and the Economic Transition in Hungary
In Hungary as in other East Bloc countries, enterprises have given a variety of nonwage benefits to their workers, sometimes called the "social wage." We explore what has happened to non-wage compensation during the economic transition which began in 1989. During this period, the real wage has fallen, and many aspects of enterprise operations have undergone change. This paper considers three broad questions. (1) How has total compensation and its composition changed during this period of restructuring? Have changes in non-wage compensation offset or reinforced changes in wages and which elements have been increasing, which decreasing? (2) What factors can account for the change? (3) Have enterprise non-wage benefits in fact served social functions in addition to their business functions, and, if so, has the social role of benefits changed during this period
On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system
In a previous work \cite{An1} matter models such that the energy density
and the radial- and tangential pressures and
satisfy were considered in the context of
Buchdahl's inequality. It was proved that static shell solutions of the
spherically symmetric Einstein equations obey a Buchdahl type inequality
whenever the support of the shell, satisfies
Moreover, given a sequence of solutions such that then the
limit supremum of was shown to be bounded by
In this paper we show that the hypothesis
that can be realized for Vlasov matter, by constructing a
sequence of static shells of the spherically symmetric Einstein-Vlasov system
with this property. We also prove that for this sequence not only the limit
supremum of is bounded, but that the limit is
since for Vlasov matter.
Thus, static shells of Vlasov matter can have arbitrary close to
which is interesting in view of \cite{AR2}, where numerical evidence is
presented that 8/9 is an upper bound of of any static solution of the
spherically symmetric Einstein-Vlasov system.Comment: 20 pages, Late
The Einstein-Vlasov sytem/Kinetic theory
The main purpose of this article is to guide the reader to theorems on global
properties of solutions to the Einstein-Vlasov system. This system couples
Einstein's equations to a kinetic matter model. Kinetic theory has been an
important field of research during several decades where the main focus has
been on nonrelativistic- and special relativistic physics, e.g. to model the
dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In
1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov
system. Since then many theorems on global properties of solutions to this
system have been established. The Vlasov equation describes matter
phenomenologically and it should be stressed that most of the theorems
presented in this article are not presently known for other such matter models
(e.g. fluid models). The first part of this paper gives an introduction to
kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is
introduced. We believe that a good understanding of kinetic theory in
non-curved spacetimes is fundamental in order to get a good comprehension of
kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity
(http://www.livingreviews.org
- …
