7 research outputs found

    Statin use decreases coagulation in users of vitamin K antagonists

    Get PDF
    Purpose: The purpose of the study is to determine the immediate and long-term effect of statins on coagulation in patients treated with vitamin K antagonists (VKAs). Methods: We selected patients on VKAs of two Dutch anticoagulation clinics who initiated treatment with a statin between 2009 and 2013. Patients who initiated or stopped concomitant drugs that interact with VKAs or were hospitalised during follow-up were excluded. The VKA dosage (mg/day) after statin initiation was compared with the last VKA dosage before the statin was started. Immediate and long-term differences in VKA dosage (at 6 and 12 weeks) were calculated with a paired student t test. Results: Four hund

    Development of a multivariable prediction model for identification of patients at risk for medication transfer errors at ICU discharge

    Get PDF
    Introduction Discharge from the intensive care unit (ICU) is a high-risk process, leading to numerous potentially harmful medication transfer errors (PH-MTE). PH-MTE could be prevented by medication reconciliation by ICU pharmacists, but resources are scarce, which renders the need for predicting which patients are at risk for PH-MTE. The aim of this study was to develop a prognostic multivariable model in patients discharged from the ICU to predict who is at increased risk for PH-MTE after ICU discharge, using predictors of PH-MTE that are readily available at the time of ICU discharge. Material and methods Data for this study were derived from the Transfer ICU Medication reconciliation study, which included ICU patients and scored MTE at discharge of the ICU. The potential harm of every MTE was estimated with a validated score, where after MTE with potential for harm were indicated as PH-MTE. Predictors for PH-MTE at ICU discharge were identified using LASSO regression. The c statisticprovided a measure of the overall discriminative ability of the prediction model and the prediction model was internally validated by bootstrap resampling. Based on sensitivity and specificity, the cut-off point of the prediction model was determined. Results The cohort contained 258 patients and six variables were identified as predictors for PH-MTE: length of ICU admission, number of home medications and patient taking one of the following medication groups at home: vitamin/mineral supplements, cardiovascular medication, psycholeptic/analeptic medication and medication for obstructive airway disease. The c of the final prediction model was 0.73 (95%CI 0.67–0.79) and decreased to 0.62 according to bootstrap resampling. At a cut-off score of two the prediction model yielded a sensitivity of 70% and a specificity of 61%. Conclusions A multivariable prediction model was developed to identify patients at risk for PH-MTE after ICU discharge. The model contains predictors that are available on the day of ICU discharge. Once external validation and evaluation of this model in daily practice has been performed, its incorporation into clinical practice could potentially allow institutions to identify patients at risk for PH-MTE after ICU discharge, on the day of ICU discharge, thus allowing for efficient, patient-specific allocation of clinical pharmacy services

    Efficacy and safety of intravenous imatinib in COVID-19 ARDS: a randomized, double-blind, placebo-controlled clinical trial

    Get PDF
    Abstract Purpose A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. Methods This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. Results 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI − 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (− 1.17 ml/kg, 95% CI − 1.87 to − 0.44). Conclusions IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23)

    Tailored anticoagulant treatment after a first venous thromboembolism: protocol of the Leiden Thrombosis Recurrence Risk Prevention (L-TRRiP) study - cohort-based randomised controlled trial

    No full text
    Introduction Patients with a first venous thromboembolism (VTE) are at risk of recurrence. Recurrent VTE (rVTE) can be prevented by extended anticoagulant therapy, but this comes at the cost of an increased risk of bleeding. It is still uncertain whether patients with an intermediate recurrence risk or with a high recurrence and high bleeding risk will benefit from extended anticoagulant treatment, and whether a strategy where anticoagulant duration is tailored on the predicted risks of rVTE and bleeding can improve outcomes. The aim of the Leiden Thrombosis Recurrence Risk Prevention (L-TRRiP) study is to evaluate the outcomes of tailored duration of long-term anticoagulant treatment based on individualised assessment of rVTE and major bleeding risks.Methods and analysis The L-TRRiP study is a multicentre, open-label, cohort-based, randomised controlled trial, including patients with a first VTE. We classify the risk of rVTE and major bleeding using the L-TRRiP and VTE-BLEED scores, respectively. After 3 months of anticoagulant therapy, patients with a low rVTE risk will discontinue anticoagulant treatment, patients with a high rVTE and low bleeding risk will continue anticoagulant treatment, whereas all other patients will be randomised to continue or discontinue anticoagulant treatment. All patients will be followed up for at least 2 years. Inclusion will continue until the randomised group consists of 608 patients; we estimate to include 1600 patients in total. The primary outcome is the combined incidence of rVTE and major bleeding in the randomised group after 2 years of follow-up. Secondary outcomes include the incidence of rVTE and major bleeding, functional outcomes, quality of life and cost-effectiveness in all patients.Ethics and dissemination The protocol was approved by the Medical Research Ethics Committee Leiden-Den Haag-Delft. Results are expected in 2028 and will be disseminated through peer-reviewed journals and during (inter)national conferences.Trial registration number NCT06087952
    corecore