29 research outputs found

    GAMBUT field experiment of peatland wildfires in Sumatra: from ignition to spread and suppression

    Get PDF
    Peat wildfires can burn over large areas of peatland, releasing ancient carbon and toxic gases into the atmosphere over prolonged periods. These emissions cause haze episodes of pollution and accelerate climate change. Peat wildfires are characterised by smouldering - the flameless, most persistent type of combustion. Mitigation strategies are needed in arctic, boreal, and tropical areas but are hindered by incomplete scientific understanding of smouldering. Here, we present GAMBUT, the largest and longest to-date field experiment of peat wildfires, conducted in a degraded peatland of Sumatra. Temperature, emission and spread of peat fire were continuously measured over 4-10 days and nights, and three major rainfalls. Measurements of temperature in the soil provide field experimental evidence of lethal fire severity to the biological system of the peat up to 30 cm depth. We report that the temperature of the deep smouldering is 13% hotter than shallow layer during daytime. During night-time, both deep and shallow smouldering had the same level of temperature. The experiment was terminated by suppression with water. Comparison of rainfall with suppression confirms the existence of a critical water column height below which extinction is not possible. GAMBUT provides a unique understanding of peat wildfires at field conditions that can contribute to mitigation strategies

    Experimental study of moisture content effects on the transient gas and particle emissions from peat fires

    Get PDF
    Peat fires are a global-scale source of carbon emissions and a leading cause of regional air quality deterioration, especially in Southeast Asia. The ignition and spread of peat fires are strongly affected by moisture, which acts as an energy sink. However, moisture effects on peat fire emissions are poorly understood in the literature. Here we present the first experimental work to investigate transient gas and particle emissions for a wide range of peat moisture contents (MCs). We include drying, ignition, smouldering spread, and even flaming stages. Peat samples conditioned to different MCs were burnt in the laboratory where a suite of diagnostics simultaneously measured mass loss rate, temperature profiles, real-time concentration of 20 gas species, and size-fractioned particle mass. It was found that MC affects emissions, in addition to peat burning dynamics. An increase in MC below a smouldering threshold of 160% in dry basis leads to a decrease in NH 3 and greenhouse gas emissions, including CO 2 and CH 4. The burning of wet peat emits more coarse particles (between 1 and 10 µm) than dry peat, especially during the ignition stage. In contrast, flaming stage emits mostly soot particles less than 1 µm, and releases 100% more fully oxidised gas species including CO 2, NO 2 and SO 2 than smouldering. The examination of the resulting modified combustion efficiency (MCE) reveals that it fails to recongnise smouldering combustion with sufficient accuracy, especially for wet peat with MC > 120%. MCE confuses drying and flaming, and has significant variations during the ignition stage. As a result, MCE is not valid as a universal fire mode indicator used in the field. This work fills the knowledge gap between moisture and emissions, and provides a better understanding which can help mitigate peat fires
    corecore