3 research outputs found

    Promoting quality in low-cost gas sensor devices for real-world applications

    Get PDF
    Recent advancements in metal oxide semiconductor sensors enable system integrators to make sensor devices without the traditional complications of operating barebone sensor components. Anyone, so it seems, can put together multi-sensor-systems by combining an integrated sensor subsystem with a small piece of digital infrastructure, resulting in low-cost sensor systems or sensor networks for all kinds of applications. With low energy consumption, the deployment of close meshed sensor networks is becoming a reality, promising high density data for big data models. However, data quality is not necessarily a feature of such devices, since the device output signals are heavily processed and the insight into the actual operating technique is black-boxed by the respective sensor manufacturer. High volume production of a sensor model requires widely applicable output information, yet this mainstreaming negatively impacts quality control efforts on the system level as well as niche applications that require specialized operation modes. This article exemplarily examines the measurement chain of typical metal oxide semiconductor sensor applications and deduces requirements for a technically sound advancement of the subject for research and commercial purposes. Equivalent considerations can be made for any low-cost sensor principle and their respective challenges. The conclusion urges all stakeholders participating in the development and marketing of sensor devices to advance a scientifically valid state of knowledge and to educate their customers and even the general public accordingly

    Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to?

    Get PDF
    Monitoring of volatile organic compounds (VOCs) is of increasing importance in many application fields such as environmental monitoring, indoor air quality, industrial safety, fire detection, and health applications. The challenges in all of these applications are the wide variety and low concentrations of target molecules combined with the complex matrix containing many inorganic and organic interferents. This paper will give an overview over the application fields and address the requirements, pitfalls, and possible solutions for using low-cost sensor systems for VOC monitoring. The focus lies on highly sensitive metal oxide semiconductor gas sensors, which show very high sensitivity, but normally lack selectivity required for targeting relevant VOC monitoring applications. In addition to providing an overview of methods to increase the selectivity, especially virtual multisensors achieved with dynamic operation, and boost the sensitivity further via novel pro-concentrator concepts, we will also address the requirement for high-performance gas test systems, advanced solutions for operating and read-out electronic, and, finally, a cost-efficient factory and on-site calibration. The various methods will be primarily discussed in the context of requirements for monitoring of indoor air quality, but can equally be applied for environmental monitoring and other fields

    Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to?

    Get PDF
    Monitoring of volatile organic compounds (VOCs) is of increasing importance in many application fields such as environmental monitoring, indoor air quality, industrial safety, fire detection, and health applications. The challenges in all of these applications are the wide variety and low concentrations of target molecules combined with the complex matrix containing many inorganic and organic interferents. This paper will give an overview over the application fields and address the requirements, pitfalls, and possible solutions for using low-cost sensor systems for VOC monitoring. The focus lies on highly sensitive metal oxide semiconductor gas sensors, which show very high sensitivity, but normally lack selectivity required for targeting relevant VOC monitoring applications. In addition to providing an overview of methods to increase the selectivity, especially virtual multisensors achieved with dynamic operation, and boost the sensitivity further via novel pro-concentrator concepts, we will also address the requirement for high-performance gas test systems, advanced solutions for operating and read-out electronic, and, finally, a cost-efficient factory and on-site calibration. The various methods will be primarily discussed in the context of requirements for monitoring of indoor air quality, but can equally be applied for environmental monitoring and other fields
    corecore