5,861 research outputs found

    Systematic and quantitative approach for the identification of high energy gamma-ray source populations

    Full text link
    A large fraction of the detections to be made by the Gamma-ray Large Area Space Telescope (GLAST) will initially be unidentified. We argue that traditional methodological approaches to identify individuals and/or populations of γ\gamma-ray sources will encounter procedural limitations. These limitations will hamper our ability to classify source populations lying in the anticipated dataset with the required degree of confidence, particularly those for which no member has yet been convincingly detected in the predecessor experiment EGRET. Here we suggest a new paradigm for achieving the classification of γ\gamma-ray source populations based on the implementation of an a priori protocol to search for theoretically-motivated candidate sources. In order to protect the discovery potential of the sample, it is essential that such paradigm will be defined before the data is unblinded. Key to the new procedure is a statistical assessment by which the discovery of a new population can be claimed. Although we explicitly refer here to the case of GLAST, the scheme we present may be adapted to other experiments confronted with a similar problematic.Comment: In press in The Astrophysical Journal Letters. Accepted on July 12, 200

    The new surprising behaviour of the two "prototype" blazars PKS 2155-304 and 3C 279

    Full text link
    Recent VHE observations have unveiled a surprising behaviour in two well-known blazars at opposite sides of the blazar sequence. PKS 2155-304 have shown for the first time in an HBL a large Compton dominance, high gamma-ray luminosities and a cubic relation between X-ray and VHE fluxes. 3C 279 is the first FSRQ detected at VHE. The high luminosity required to overcome the significant absorption caused by the BLR emission cannot be easily reconciled with the historical and quasi-simultaneous SED properties. Both cases shed a new light on the structure and ambient fields of blazars. Contrary to previous claims, it is also shown that 3C 279 --as any FSRQ-- cannot in general provide robust constraints on the EBL.Comment: Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008" (Gamma 2008), July 7-11, 2008. Slightly refined text with updated reference

    EGRET upper limits and stacking searches of gamma-ray observations of luminous and ultra-luminous infrared galaxies

    Full text link
    We present a stacking analysis of EGRET γ\gamma-ray observations at the positions of luminous and ultraluminous infrared galaxies. The latter were selected from the recently presented HCN survey, which is thought to contain the most active star forming regions of the universe. Different sorting criteria are used and, whereas no positive collective detection of γ\gamma-ray emission from these objects we determined both collective and individual upper limits. The upper most excess we find appears in the case of ULIRGs ordered by redshift, at a value of 1.8σ\sigma.Comment: Accepted for publication in the Astrophysical Journa

    The GeV-TeV Connection in Galactic gamma-ray sources

    Get PDF
    Recent observations with atmospheric Cherenkov telescope systems such as H.E.S.S. and MAGIC have revealed a large number of new sources of very-high-energy (VHE) gamma-rays from 100 GeV - 100 TeV, mostly concentrated along the Galactic plane. At lower energies (100 MeV - 10 GeV) the satellite-based instrument EGRET revealed a population of sources clustering along the Galactic Plane. Given their adjacent energy bands a systematic correlation study between the two source catalogues seems appropriate. Here, the populations of Galactic sources in both energy domains are characterised on observational as well as on phenomenological grounds. Surprisingly few common sources are found in terms of positional coincidence and spectral consistency. These common sources and their potential counterparts and emission mechanisms will be discussed in detail. In cases of detection only in one energy band, for the first time consistent upper limits in the other energy band have been derived. The EGRET upper limits are rather unconstraining due to the sensitivity mismatch to current VHE instruments. The VHE upper limits put strong constraints on simple power-law extrapolation of several of the EGRET spectra and thus strongly suggest cutoffs in the unexplored energy range from 10 GeV - 100 GeV. Physical reasons for the existence of cutoffs and for differences in the source population at GeV and TeV energies will be discussed. Finally, predictions will be derived for common GeV - TeV sources for the upcoming GLAST mission bridging for the first time the energy gap between current GeV and TeV instruments.Comment: (1) Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford, USA (2) Stanford University, W.W. Hansen Experimental Physics Lab (HEPL) and KIPAC, Stanford, USA (3) ICREA & Institut de Ciencies de l'Espai (IEEC-CSIC) Campus UAB, Fac. de Ciencies, Barcelona, Spain. (4) School of Physics and Astronomy, University of Leeds, UK. Paper Submitted to Ap

    Orthographically Mediated Inhibition Effects: Evidence of Activational Feedback During Visual Word Recognition

    Get PDF
    According to the multistage activation model of visual word recognition (Besner & Smith, 1992a, 1992b; Borowsky & Besner, 1993), during visual word recognition, activation can spread from semantic to orthographic representations via a feedback mechanism. Two experiments were conducted in order to test directly whether or not such feedback occurs, and if so, under what conditions. In order to directly measure feedback, a mediated priming paradigm was utilized. In this paradigm, participants named aloud targets that were preceded either by a semantically related prime (e.g., dog - cat! or by a prime that is related to the target via a mediating word (e.g., dog - (cat) - vat). In this case the mediating word cat is semantically related to the prime, and is both orthographically and phonologically related to the target. Direct evidence of activational feedback was obtained in the form of mediated inhibition effects which were found in the presence of semantic priming effects. These mediated inhibition effects are consistent with activational feedback, thus, they support the multistage activation model of visual word recognition and not the activation-verification model (Paap, Newsome, McDonald, & Schvaneveldt, 1982; Paap, McDonald, Schvaneveldt & Noel, 1987)

    On hadronic beam models for quasars and microquasars

    Full text link
    Most of the hadronic jet models for quasars (QSOs) and microquasars (MQs) found in literature represent beams of particles (e.g. protons). These particles interact with the matter in the stellar wind of the companion star in the system or with crossing clouds, generating gamma-rays via proton-proton processes. Our aim is to derive the particle distribution in the jet as seen by the observer, so that proper computation of the γ\gamma-ray and neutrino yields can be done. We use relativistic invariants to obtain the transformed expressions in the case of a power-law and power-law with a cutoff particle distribution in the beam. We compare with previous expressions used earlier in the literature. We show that formerly used expressions for the particle distributions in the beam as seen by the observer are in error, differences being strongly dependent on the viewing angle. For example, for Γ=10\Gamma =10 (Γ\Gamma is the Lorentz factor of the blob) and angles larger than 20o\sim 20^o, the earlier-used calculation entails an over-prediction (order of magnitude or more) of the proton spectra for E>Γmc2E>\Gamma mc^2, whereas it always over-predicts (two orders of magnitude) the proton spectrum at lower energies, disregarding the viewing angle. All the results for photon and neutrino fluxes in hadronic models in beams that have made use of the earlier calculation are affected. Given that correct gamma-ray fluxes will be in almost any case significantly diminished in comparison with published results, and that the time of observations in Cherenkov facilities grows with the square of the flux-reduction factor in a statistically limited result, the possibility of observing hadronic beams is undermined.Comment: Accepted for publication in A&A Letter

    Electron-beam-induced shift in the apparent position of a pinned vortex in a thin superconducting film

    Full text link
    When an electron beam strikes a superconducting thin film near a pinned vortex, it locally increases the temperature-dependent London penetration depth and perturbs the circulating supercurrent, thereby distorting the vortex's magnetic field toward the heated spot. This phenomenon has been used to visualize vortices pinned in SQUIDs using low-temperature scanning electron microscopy. In this paper I develop a quantitative theory to calculate the displacement of the vortex-generated magnetic-flux distribution as a function of the distance of the beam spot from the vortex core. The results are calculated using four different models for the spatial distribution of the thermal power deposited by the electron beam.Comment: 9 pages, 6 figures, resubmitted to PRB with referee-suggested revisions, includes new paragraph on numerical evaluatio

    The H.E.S.S. multi-messenger program

    Full text link
    Based on fundamental particle physics processes like the production and subsequent decay of pions in interactions of high-energy particles, close connections exist between the acceleration sites of high-energy cosmic rays and the emission of high-energy gamma rays and high-energy neutrinos. In most cases these connections provide both spatial and temporal correlations of the different emitted particles. The combination of the complementary information provided by these messengers allows to lift ambiguities in the interpretation of the data and enables novel and highly sensitive analyses. In this contribution the H.E.S.S. multi-messenger program is introduced and described. The current core of this newly installed program is the combination of high-energy neutrinos and high-energy gamma rays. The search for gamma-ray emission following gravitational wave triggers is also discussed. Furthermore, the existing program for following triggers in the electromagnetic regime was extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An overview over current and planned analyses is given and recent results are presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland
    corecore