156 research outputs found

    Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Get PDF
    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami

    DNA binding and intercalation by novel porphyrins: role of charge and substituents probed by DNase I footprinting and topoisomerase I unwinding

    Get PDF
    AbstractPorphyrins carrying four charged sidechains, e.g., meso-tetrakis[4-N-methylpyridiniumyl]- and meso-tetrakis[4-N-(2-hydroxyethyl)pyridiniumyl]-porphyrin, bound and intercalated similarly into DNA as measured by helix stabilization and DNA unwinding studies in the presence of DNA topoisomerase I. Despite their different bulky sidechains, these complexes gave essentially identical DNase I footprinting patterns. In contrast, tetrasubstituted porphyrins carrying three phenyl rings and a single positively charged pyridiniumyl sidechain did not intercalate and exhibited little affinity for DNA. Thus, the presence of charged sidechains on the porphyrin rather than their identity appears to be critical for efficient DNA intercalation. The results are discussed in regard to current models for the porphyrin-DNA intercalation complex

    Regulated growth of diatom cells on self-assembled monolayers

    Get PDF
    We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF(3), -CH(3), -COOH, and -NH(2 )groups using the technique of self-assembled monolayers (SAM), and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms formed two dimensional arrays; this was not possible without the rinsing treatment. Furthermore, we examined the number of cells that grew and their motility by time-lapse imaging in order to clarify the interaction between the cells and SAMs. We hope that our results will be a basis for developing biodevices using living photosynthetic diatom cells

    Conformational effects of nucleotide exchange in ras p21 proteins as studied by fluorescence spectroscopy

    Get PDF
    AbstractThe intrinsic fluorescence properties of the oncogene protein p21N-ras, p21H-ras and one of its transforming mutants, p21N-ras (Va1112), have been investigated. A mutant containing a single tryptophan at position 28 in p21H-ras (Trp28) has been specifically engineered to provide a probe of protein conformation on nucleotide binding. The proteins produced essentially similar circular dichroism spectra typical of alpha/beta proteins. A decrease in the intensity of the fluorescence emission spectrum due to tyrosine occurred on GDP/GTP nucleotide exchange in the native and mutant proteins. Selective excitation of the single tryptophan in p21 produced a decrease in fluorescence intensity which was accompanied by a blue shift in the wavelength of maximum emission on nucleotide exchange. A reduction in the residual Mg2+ ion concentration enhanced this effect

    Accuracy and Time Delay of Glucose Measurements of Continuous Glucose Monitoring and Bedside Artificial Pancreas During Hyperglycemic and Euglycemic Hyperinsulinemic Glucose Clamp Study

    Get PDF
    Background: Glucose values of continuous glucose monitoring (CGM) have time delays compared with plasma glucose (PG) values. Artificial pancreas (STG-55, Nikkiso, Japan) (AP), which measures venous blood glucose directly, also has a time delay because of the long tubing lines from sampling vessel to the glucose sensor. We investigate accuracy and time delay of CGM and AP in comparison with PG values during 2-step glucose clamp study. Methods: Seven patients with type 2 diabetes and 2 healthy volunteers were included in this study. CGM (Enlite sensor, Medtronic, CA) was attached on the day before the experiment. Hyperglycemic (200 mg/dL) clamp was performed for 90 minutes, followed by euglycemic (100 mg/dL) hyperinsulinemic (100 μU/mL) clamp for 90-120 minutes using AP. CGM sensor glucose was calibrated just before and after the clamp study. AP and CGM values were compared with PG values. Results: AP values were significantly lower than PG values at 5, 30 minute during hyperglycemic clamp. In comparison, CGM value at 0 minute was significantly higher, and its following values were almost significantly lower than PG values. The time delay of AP and CGM values to reach maximum glucose levels were 5.0 ± 22.3 (NS) and 28.6 ± 32.5 (p<0.05) min, respectively. Mean absolute rate difference of CGM was significantly higher than AP (24.0 ± 7.6 vs. 15.3 ± 4.6, p < 0.05) during glucose rising period (0-45 min), however, there are no significant difference during other periods. Conclusions: Both CGM and AP failed to follow plasma glucose values during non-physiologically rapid glucose rising, however, indicated accurate values during physiological glucose change

    Isolation of a nearly eclipsed chiral rotamer of 1,2-dichloroethane as an inclusion crystal with a chiral host compound

    Get PDF
    A nearly eclipsed chiral rotamer of 1,2-dichloroethane has been isolated in a pure state as an inclusion complex crystal with the chiral host compound, (S)-(-)-2-bromo-3,3a,8-triphenyl-1,3a-dihydrocyclopenta[ a]inden-1-one and an X-ray crystal structure of the complex has been studied.http://pubs.rsc.org/en/content/articlelanding/1997/cc/a702333

    Sarcopenia and AGEs in type 1 diabetes

    Get PDF
    Accumulation of advanced glycation end-products (AGEs) is thought to contribute to muscle weakness in a diabetic animal model. Skin autofluorescence is a proposed marker for accumulation of AGEs in the skin. We aimed to investigate the relationship between AGEs accumulation, sarcopenia and muscle function of Japanese patients with type 1 diabetes. A total of 36 patients with type 1 diabetes participated in the present cross-sectional study. Sarcopenia parameters (skeletal muscle mass index and knee extension strength) were compared with subcutaneous AGEs accumulation using skin autofluorescence. The prevalence of sarcopenia and impaired knee extension strength was 16.6% (men 0.0%, women 22.2%) and 47.2% (men 22.2%, women 55.6%), respectively. Knee extension strength was negatively correlated with skin autofluorescence (r² = 0.14, P < 0.05), but not with skeletal muscle mass index. In conclusion, the AGEs accumulation might be one of the reasons of impaired lower limb muscle function in Japanese patients with type 1 diabetes

    On the mechano-chiral effect of vortical flows on the dichroic spectra of 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphyrin J-aggregates

    Get PDF
    Phase-modulated ellipsometry of the J-aggregates of the title porphyrin shows that the material gives a true CD signal. This confirms that there is a real chiral transfer by mechanical forces, mediated by shear gradient flows, from the macroscopic to the electronic transition level. Dislocations in the structure of the aggregate could justify the formation of chirality at the level of the electronic transitions once the mesophases can be sculptured by hydrodynamic gradient flows

    Corticotropin-Releasing Factor Receptor 1 in the Anterior Cingulate Cortex Mediates Maternal Absence-Induced Attenuation of Transport Response in Mouse Pups

    Get PDF
    A human infant initially shows non-selective sociality, and gradually develops selective attachment toward its caregiver, manifested as “separation anxiety.” It was unclear whether such sophistication of attachment system occurs in non-human mammals. To seek a mouse model of separation anxiety, we utilized a primitive attachment behavior, the Transport Response, in that both human and mouse newborns immediately stop crying and stay immobile to cooperate with maternal carrying. We examined the mouse Transport Response in three social contexts: 30-min isolation in a novel environment, 30-min maternal absence experienced with littermates in the home cage, and the control home-cage condition with the mother and littermates. The pups after postnatal day (PND) 13 attenuated their Transport Response not only in complete isolation but also by maternal absence, and activated several brain areas including the periventricular nucleus of the hypothalamus, suggesting that 30-min maternal absence was perceived as a social stress by mouse pups after PND13. This attenuation of Transport Response by maternal absence was independent with plasma corticosterone, but was diminished by prior administration of a corticotropin-releasing factor receptor 1 (CRFR1) antagonist. Among 18 brain areas examined, only neurons in the anterior cingulate cortex (ACC) co-express c-fos mRNA and CRFR1 after maternal absence. Consistently, excitotoxic ACC lesions inhibited the maternal absence-induced attenuation of Transport Response. These data indicate that the expression of mouse Transport Response is influenced not only by social isolation but also by maternal absence even in their home cage with littermates after PND13, at least partly via CRF-CRFR1 signaling in the ACC

    Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical mechanisms underlying the clinical efficacy of therapeutic antibodies, especially anticancer antibodies. Therapeutic antibodies fully lacking the core fucose of the Fc oligosaccharides have been found to exhibit much higher ADCC in humans than their fucosylated counterparts. However, data which show how fully non-fucosylated antibodies achieve such a high ADCC in human whole blood have not yet been disclosed. The precise mechanisms responsible for the high ADCC mediated by fully non-fucosylated therapeutic antibodies, even in the presence of human plasma, should be explained based on direct evidence of non-fucosylated antibody action in human blood.</p> <p>Methods</p> <p>Using a human <it>ex vivo </it>B-cell depletion assay with non-fucosylated and fucosylated anti-CD20 IgG1s rituximab, we monitored the binding of the therapeutic agents both to antigens on target cells (target side interaction) and to leukocyte receptors (FcγR) on effector cells (effector side interaction), comparing the intensities of ADCC in human blood.</p> <p>Results</p> <p>In the target side interaction, down-modulation of CD20 on B cells mediated by anti-CD20 was not observed. Simple competition for binding to the antigens on target B cells between fucosylated and non-fucosylated anti-CD20s was detected in human blood to cause inhibition of the enhanced ADCC of non-fucosylated anti-CD20 by fucosylated anti-CD20. In the effector side interaction, non-fucosylated anti-CD20 showed sufficiently high FcγRIIIa binding activity to overcome competition from plasma IgG for binding to FcγRIIIa on natural killer (NK) cells, whereas the binding of fucosylated anti-CD20 to FcγRIIIa was almost abolished in the presence of human plasma and failed to recruit NK cells effectively. The core fucosylation levels of individual serum IgG1 from healthy donors was found to be so slightly different that it did not affect the inhibitory effect on the ADCC of fucosylated anti-CD20.</p> <p>Conclusion</p> <p>Our results demonstrate that removal of fucosylated antibody ingredients from antibody therapeutics elicits high ADCC in human blood by two mechanisms: namely, by evading the inhibitory effects both of plasma IgG on FcγRIIIa binding (effector side interaction) and of fucosylated antibodies on antigen binding (target side interaction).</p
    corecore