32 research outputs found

    Prevalence of pathogenic germline variants in the circulating tumor DNA testing

    Get PDF
    BACKGROUND: Somatic and germline variants are not distinguishable by circulating tumor DNA (ctDNA) testing without analyzing non-tumor samples. Although confirmatory germline testing is clinically relevant, the criteria for selecting presumed germline variants have not been established in ctDNA testing. In the present study, we aimed to evaluate the prevalence of pathogenic germline variants in clinical ctDNA testing through their variant allele fractions (VAFs). METHODS: A total of consecutive 106 patients with advanced solid tumors who underwent ctDNA testing (Guardant360®) between January 2018 and March 2020 were eligible for this study. To verify the origin of pathogenic variants reported in ctDNA testing, germline sequencing was performed using peripheral blood DNA samples archived in the Clinical Bioresource Center in Kyoto University Hospital (Kyoto, Japan) under clinical research settings. RESULTS: Among 223 pathogenic variants reported in ctDNA testing, the median VAF was 0.9% (0.02-81.8%), and 88 variants with ≥ 1% VAFs were analyzed in germline sequencing. Among 25 variants with ≥ 30% VAFs, seven were found in peripheral blood DNA (BRCA2: n = 6, JAK2: n = 1). In contrast, among the 63 variants with VAFs ranging from 1 to < 30%, only one variant was found in peripheral blood DNA (TP53: n = 1). Eventually, this variant with 15.6% VAF was defined to be an acquired variant, because its allelic distribution did not completely link to those of neighboring germline polymorphisms. CONCLUSION: Our current study demonstrated that VAFs values are helpful for selecting presumed germline variants in clinical ctDNA testing

    Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Escherichia coli</it>, approximately 100 regulatory small RNAs (sRNAs) have been identified experimentally and many more have been predicted by various methods. To provide a comprehensive overview of sRNAs, we analysed the low-molecular-weight RNAs (< 200 nt) of <it>E. coli </it>with deep sequencing, because the regulatory RNAs in bacteria are usually 50-200 nt in length.</p> <p>Results</p> <p>We discovered 229 novel candidate sRNAs (≥ 50 nt) with computational or experimental evidence of transcription initiation. Among them, the expression of seven intergenic sRNAs and three <it>cis</it>-antisense sRNAs was detected by northern blot analysis. Interestingly, five novel sRNAs are expressed from prophage regions and we note that these sRNAs have several specific characteristics. Furthermore, we conducted an evolutionary conservation analysis of the candidate sRNAs and summarised the data among closely related bacterial strains.</p> <p>Conclusions</p> <p>This comprehensive screen for <it>E. coli </it>sRNAs using a deep sequencing approach has shown that many as-yet-undiscovered sRNAs are potentially encoded in the <it>E. coli </it>genome. We constructed the <it>Escherichia coli </it>Small RNA Browser (ECSBrowser; <url>http://rna.iab.keio.ac.jp/</url>), which integrates the data for previously identified sRNAs and the novel sRNAs found in this study.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    A new experimental procedure for evaluating the biological effect of radon

    No full text
    Inhalation of radon and its short-lived progeny gives a considerable amount of radiation dose to the general public. The dosimetry for the radon risk estimation has been attempted by comparing the cancer incidence between different populations including underground miners but not yet suffi ciently accurate to provide quantitative estimates of risks of the radon inhalation. To understand the molecular basis for the lifetime cancer risk caused by the internally deposited radionuclides, especially the alpha particle- emitting nuclides, we planned to establish a simple experimental system using mammary cultured cells. We used mouse FM3A cells, derived from mammary grand tumor cells, that grow on soft agar plates with the plating effi ciency of >90%. Since the cells can grow while being exposed to the atmosphere, we thought it could be an ideal model system to examine the biological effect of radon on epithelial cells. As a preliminary experiment, exponentially growing FM3A cells were exposed to X ray (0, 0.3, 1, 3, and 10Gy), and plated on the medium containing soft-agar. Colonies formed on the soft-agar plates were picked up, and DNA samples extracted from the cells were analyzed at the molecular level by using the direct DNA sequencing method, as well as the Southern blot hybridization technique. For direct DNA sequencing, adenine phosphoribosyl transferase gene was chosen as a typical case of non-essential genomic gene and cytidine triphosphate synthetase as an essential one. For the Southern blot analysis, Pc-1 (Ms6-hm) was chosen as a hypervariable tandem repeat sequence, and its genomic instability was examined. We will explain the usefulness of this new experimental procedure for the evaluation of the biological effect caused by radon and its short-lived progeny.第12回国際放射線研究会
    corecore