234 research outputs found

    ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ срСдства развития ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния для модСлирования Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ²Ρ‹Ρ… мСстороТдСний

    Get PDF
    ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° примСнимости ΠΈ эффСктивности ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… систСм Π²Π΅Π΄ΡƒΡ‰ΠΈΡ… Π·Π°Ρ€ΡƒΠ±Π΅ΠΆΠ½Ρ‹Ρ… ΠΈ отСчСствСнных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ, ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π½Π° Ρ€Ρ‹Π½ΠΊΠ΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ для модСлирования Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ²Ρ‹Ρ… мСстороТдСний. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… систСм, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ слСдуСт Ρ€ΡƒΠΊΠΎΠ²ΠΎΠ΄ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ обосновании Π²Ρ‹Π±ΠΎΡ€Π°. Π”Π°Π½ΠΎ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ описаниС слоТных процСссов гСологичСского ΠΈ гидродинамичСского модСлирования Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ²Ρ‹Ρ… мСстороТдСний с использованиСм Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… 3D-ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΈΡ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… систСм

    Holocene reef growth and recent carbonate production in the Red Sea

    Get PDF
    Holocene reef growth, present date bioerosion .and recorded carbonate production were studied in the fringing reef at Aqaba, Red Sea. Water depth, wave impact as well as nutrient availability were considered. The carbonate production was measured for several coral samples. Samples of Porites-colonies were collected from several depths and sites near the Marine Science Station at Aqaba. Growth rate depends on water depth, size and age of colonies. Within the coral optimum of water depth growth rates vary between 5 and 16 mm/yr. Coral carbonate production was calculated on the base of annual growth increments and skeletal density using transects from shallow subtidal down to 40 m water depth. High resolution stable isotope data were measured to prove the origin of growth increments. Long-term trends of sea surface temperature and carbon isotope shift (1800-today) fit to the known global deviations. Bioerosion rates were determined using standard dead coral substrates exposed in different water depths and environmental settings. Rates vary between 0.6 and 1.4 kg/m2yr. Sediment export evaluated by means of simple sediment traps ranges between 0.3 and 0.7 kg/m2yr. Gross carbonate production, mainly built up by scleractinian corals, amounts to ca. 1.57 kg/m2yr. Bioerosion alters approx. 1.3 kg/m2yr of hard substrates into sediment. Sediment export is estimated to be ca. 0.4-0.6 kg/m2yr. Thus a net production of ca. 0.7 to 0.9 kg/m2yr should remain in the present reef, which is proved by the recorded carbonate production (reef drillings). Net production preserved in the reef can be given with ca. 800 kg/m2kyr (=0.8 kg/m2yr)

    Meeresspiegelschwankungen und ihre geologische Überlieferung im Karbonatsystem

    Get PDF
    The dependency between carbonate sediment production on a carbonate platform and its relation to sea-level changes is discusses here. The topography of the upper slope plays an important role in determining the way in which sedimentation continues during lowstands in sea level. The mineralogy and composition of sediments produced on the platform can clearly be related to those found in sediments deposited in the adjacent basin. Two examples from the Recent are described: (1) Sanganeb Atoll (Red Sea), and (2) Pedro Bank (caribbean). The applicability of the "highstand shedding" principle is shown for ancient carbonate platforms

    Анализ ΠΈ интСрпрСтация гидродинамичСских исслСдований для Π΄Π²ΡƒΡ…Ρ„Π°Π·Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° (Π²ΠΎΠ΄Π°-Π½Π΅Ρ„Ρ‚ΡŒ)

    Get PDF
    ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Π΄Π°Π½Π½Ρ‹Ρ… гидродинамичСских исслСдований, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π½Π° скваТинах с ΠΎΠ±Π²ΠΎΠ΄Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΎΡ‚ нуля. Π Π°Π·ΠΎΠ±Ρ€Π°Π½Ρ‹ прСимущСства ΠΈ нСдостатки примСняСмых ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π°. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ подвиТности для Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² гидродинамичСских исслСдований скваТин

    A test of the biogenicity criteria established for microfossils and stromatolites on quaternary tufa and speleothem materials formed in the β€œTwilight zone” at Caerwys, UK

    Get PDF
    Β© 2015, Mary Ann Liebert, Inc. The ability to distinguish the features of a chemical sedimentary rock that can only be attributed to biology is a challenge relevant to both geobiology and astrobiology. This study aimed to test criteria for recognizing petrographically the biogenicity of microbially influenced fabrics and fossil microbes in complex Quaternary stalactitic carbonate rocks from Caerwys, UK. We found that the presence of carbonaceous microfossils, fabrics produced by the calcification of microbial filaments, and the asymmetrical development of tufa fabrics due to the more rapid growth of microbially influenced laminations could be recognized as biogenic features. Petrographic evidence also indicates that the development of "speleothem-like" laminae was related to episodes of growth interrupted by intervals of nondeposition and erosion. The lack of any biogenic characteristics in these laminae is consistent with their development as a result of variation in the physicochemical parameters that drive calcite precipitation from meteoric waters in such environmental settings

    Are spherulitic lacustrine carbonates an expression of large-scale mineral carbonation? : A case study from the East Kirkton Limestone, Scotland

    Get PDF
    BP Exploration Co. is thanked for funding, and particularly the Carbonate Team for supporting this research and for fruitful discussions. West Lothian Council and Scottish Natural Heritage are thanked for allowing access and permission for sampling the site. The Core Store Team at BGS Keyworth is particularly acknowledged for their assistance. Mark Anderson, Tony Sinclair (University of Hull), and Bouk Lacet (VU University Amsterdam) are thanked for technical support. Anne Kelly (SUERC) for carrying out the Strontium Isotope analyses. Mark Tyrer is thanked for his advice on PHREEQC modelling.Peer reviewedPostprin

    The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) are a polar desert, where glacial melt is the main source of water to streams and the ecosystem. Summer air temperatures are typically close to zero, and therefore foehn events can have a large impact on the meltwater production. A 14-month record of automatic weather station (AWS) data on Joyce Glacier is used to force a 1D surface energy balance model to study the impact of foehn events on the energy balance. AWS data and output of the Antarctic Mesoscale Prediction System (AMPS) on a 1.7 km grid are used to detect foehn events at the AWS site. Foehn events at Joyce Glacier occur under the presence of cyclones over the Ross Sea. The location of Joyce Glacier on the leeward side of the Royal Society Range during these synoptic events causes foehn warming through isentropic drawdown. This mechanism differs from the foehn warming through gap flow that was earlier found for other regions in the MDV and highlights the complex interaction of synoptic flow with local topography of the MDV. Shortwave radiation is the primary control on melt at Joyce Glacier, and melt often occurs with subzero air temperatures. During foehn events, melt rates are enhanced, contributing to 23 % of the total annual melt. Foehn winds cause a switch from a diurnal stability regime in the atmospheric surface layer to a continuous energy input from sensible heat flux throughout the day. The sensible heating during foehn, through an increase in turbulent mixing resulting from gustier and warmer wind conditions, is largely compensated for by extra heat losses through sublimation. Melt rates are enhanced through an additional energy surplus from a reduced albedo during foehn.</p

    Synchroneity of major late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms

    Get PDF
    Shallow-water carbonate systems are reliable recorders of sea level fluctuations and changes in ambient seawater conditions. Drilling results from Ocean Drilling Program (ODP) Legs 133 and 166 indicate that the timing of late Neogene sedimentary breaks triggered by sea level lowerings is synchronous in the sedimentary successions of the Queensland Plateau and the Great Bahama Bank. This synchrony indicates that these sea level changes were eustatic in origin. The carbonate platforms were also affected by contemporary, paleoceanographically controlled fluctuations in carbonate production. Paleoceanographic changes are recorded at 10.7, 3.6, and 1.7–2.0 Ma. At the Queensland Plateau, sea surface temperature shifts are documented by shifts from tropical to temperate carbonates (10.7 Ma) and vice versa (3.6 Ma); the modern tropical platform was established at 2.0–1.8 Ma. At Great Bahama Bank, changes were registered in compositional variations of platform-derived sediment, such as major occurrence of peloids (3.6 Ma) and higher rates of neritic carbonate input (1.7 Ma). The synchroneity of these changes attests to the far-field effects of modifications in the oceanographic circulation on shallow-water, low-latitude carbonate production

    Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula

    Get PDF
    The Western Antarctic Peninsula has recently undergone rapid climatic warming, with associated decreases in sea ice extent and duration, and increases in precipitation and glacial discharge to the ocean. These shifts in the freshwater budget can have significant consequences on the functioning of the regional ecosystem, feedbacks on regional climate, and sea-level rise. Here we use shelf-wide oxygen isotope data from cruises in four consecutive Januaries (2011–2014) to distinguish the freshwater input from sea ice melt separately from that due to meteoric sources (precipitation plus glacial discharge). Sea ice melt distributions varied from minima in 2011 of around 0 % up to maxima in 2014 of around 4–5%. Meteoric water contribution to the marine environment is typically elevated inshore, due to local glacial discharge and orographic effects on precipitation, but this enhanced contribution was largely absent in January 2013 due to anomalously low precipitation in the last quarter of 2012. Both sea ice melt and meteoric water changes are seen to be strongly influenced by changes in regional wind forcing associated with the Southern Annular Mode and the El NiΓ±o–Southern Oscillation phenomenon, which also impact on net sea ice motion as inferred from the isotope data. A near-coastal time series of isotope data collected from Rothera Research Station reproduces well the temporal pattern of changes in sea ice melt, but less well the meteoric water changes, due to local glacial inputs and precipitation effects

    The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) are a polar desert, where glacial melt is the main source of water to streams and the ecosystem. Summer air temperatures are typically close to zero, and therefore foehn events can have a large impact on the meltwater production. A 14-month record of automatic weather station (AWS) data on Joyce Glacier is used to force a 1D surface energy balance model to study the impact of foehn events on the energy balance. AWS data and output of the Antarctic Mesoscale Prediction System (AMPS) on a 1.7 km grid are used to detect foehn events at the AWS site. Foehn events at Joyce Glacier occur under the presence of cyclones over the Ross Sea. The location of Joyce Glacier on the leeward side of the Royal Society Range during these synoptic events causes foehn warming through isentropic drawdown. This mechanism differs from the foehn warming through gap flow that was earlier found for other regions in the MDV and highlights the complex interaction of synoptic flow with local topography of the MDV. Shortwave radiation is the primary control on melt at Joyce Glacier, and melt often occurs with subzero air temperatures. During foehn events, melt rates are enhanced, contributing to 23 % of the total annual melt. Foehn winds cause a switch from a diurnal stability regime in the atmospheric surface layer to a continuous energy input from sensible heat flux throughout the day. The sensible heating during foehn, through an increase in turbulent mixing resulting from gustier and warmer wind conditions, is largely compensated for by extra heat losses through sublimation. Melt rates are enhanced through an additional energy surplus from a reduced albedo during foehn
    • …
    corecore