47 research outputs found

    Upper-bound modelization of an ironed three-layered polymer-coated steel strip

    Full text link
    [EN] Global beverage can and food container consumption is very high, with billions of cans produced annually worldwide. There are several steps in can manufacturing, but ironing is the most crucial. In a previous work (Sellés et al., J Mater Process Technol 202:7-14, 2008), a series of ironing experiments were reported using a new material and an ironing simulator. This material was a three-layered polymer-coated steel, and it was seen that under some process conditions, it survived the ironing process with no damage in any of the three layers. The critical die angle was determined as well as specimen quality surface tests. In this paper, an associated theoretical ironing model is described, using the upper-bound theorem and considering the cases of successful ironing or shaving. It is possible to give insight into how to design a material that irons well. For example, the optimal layer thicknesses are also found.The authors wish to thank Mittal Steel for financial support and for providing all required materials. Authors also thank the support of Universitat Politècnica de València [grant number PAID-06-10-003-305].Sellés Cantó, MÁ.; Schmid, S.; Sanchez-Caballero, S.; Pérez Bernabeu, E.; Reig Pérez, MJ. (2012). Upper-bound modelization of an ironed three-layered polymer-coated steel strip. International Journal of Advanced Manufacturing Technology. 60:161-171. https://doi.org/10.1007/s00170-011-3584-zS16117160Sellés MA, Schmid SR, Seguí VJ (2008) Ironability of a three-layered polymer coated steel. Part 1: experimental investigation. J Mater Process Technol 202:7–14Jaworski JA, Schmid SR (1999) Survivability of laminated polymer lubricant films in ironing. Tribol Trans 1:32–38Jaworski JA, Schmid SR, Wang JE (1999) An experimental investigation of the survivability and friction characteristics of tin-coated and polymer-laminated steels. J Manuf Sci Eng 121:232–237Campion D (1980) Deep drawing and ironing—theory and practise. Sheet Met Ind 57:111–119Chang D-F (1998) An analytical model of the ironing process including redundant work effect. J Mater Process Technol 75:253–258Huang YM, Lu YH, Chan JW (1991) An elasto-plastic finite element and experimental study of the ironing process. J Mater Process Technol 26:53–80Teodosiu C, Daniel D, Cao HL, Duval JL (1995) Modelling and simulation of the can-making process using solid finite elements. J Mater Process Technol 50:133–143Zhan ZR, Wang CW (1995) Numerical simulations for extrusion and ironing and die-angle optimization. J Mater Process Technol 55:48–52Van den Bosch MJ, Schreurs PJG, Geersa MGD (2009) On the prediction of delamination during deep-drawing of polymer coated metal sheet. J Mater Process Technol 209:297–302Schünemann M, Ahmetoglu M, Altan T (1996) Prediction of process conditions in drawing and ironing of cans. J Mater Process Technol 59:1–9Van der Aa MAH, Schreurs PJG, Baaijens FPT (1998) Modelling of the wall ironing process of polymer coated sheet metal. In: Proceedings of fourth world congress on computational mechanicsNilsson A, Legge D (1999) Process development of aluminium ironing using finite element analysis. Model Simulat Mater Sci Eng 7:1005–1011Kampus Z, Nardin B (2002) Improving workability in ironing. J Mater Process Technol 130–131:64–68Wang Z, Dohda K, Jeong Y (2001) FEM simulation of surface smoothing in the ironing process. J Mater Process Technol 113:705–709Deneuville P, Lecot R (1994) The study of friction in ironing process by physical and numerical modelling. J Mater Process Technol 45:625–630Kim H-K, Hong SK (2007) FEM-based optimum design of multi-stage deep drawing process of molybdenum sheet. J Mater Process Technol 184:354–362Adamovic D, Mandic V, Jurkovic Z, Grizelj B, Stefanovic M, Marinkovic T, Aleksandrovic S (2010) An experimental modelling and numerical FE analysis of steel-strip ironing process. Teh Vjesn 17:435–444Kotani Y, Watanabe A, Nishiumura K, Watari H (2010) Numerical simulation and evaluation of local thickness increment in ironing by finite element method. Adv Mat Res 97–100:404–407Hosford W, Caddell R (2007) Metal forming: mechanics and metallurgy, 3rd edn. Cambridge University Press, CambridgeHosford WF (2008) Mechanical behavior of materials, vol 1. Cambridge University Press, CambridgeRowe GW (1972) Conformado de los metales, 1st edn. Ediciones Urmo, BilbaoKalpakjian S (1997) Manufacturing processes for engineering materials, 3rd edn. Wesley, Menlo ParkTresca H (1878) On further application of the flow of solids. Proc Inst Mech Eng 30:301Press WH, Teukolsky S, Vetterling W, Flannery BP (2002) Numerical recipes in C+ +, vol 2. Cambridge University Press, CambridgeChallen JM, Mclean LJ, Oxley LB (1884) Plastic deformation of a metal surface in sliding contact with a hard wedge: its relation to friction and wear. Proc R Soc Lond 394(1806):161–181Wilson WRD, Halliday K (1977) An inlet zone analysis for the lubrication of a drawing process by a rigid-plastic solid. Wear 42:135–14

    Implementation of Project-Based Learning at a Multidisciplinary Level of the Specialization in Design and Manufacture of Machines and Prototypes in the Degree of Mechanical Engineering

    Full text link
    [EN] Since the implementation of the Bologna Process, universities have been incorporating into the European Higher Education Area, adapting and unifying educational criteria for all the European centers. Although mobility and bilingualism have been clearly promoted in universities by increasing performance in certain areas, it is necessary to improve other areas such as the implementation of novel active learning methodologies to promote deep learning. For this reason, Universitat Politècnica de València is putting faith in the implementation of active methodologies that integrate the development and acquisition of competences making the students the center of the learning-teaching process. Moreover, the lack of coordination among different subjects of the specialization in design and manufacture of machines and prototypes in the degree of Mechanical Engineering, is another important issue to be considered as it makes students to find difficulties in solving real problems. In light of all these identified difficulties, the objective of this work is to design a project-based learning (PBL) model among the different subjects of the aforementioned specialization. The use of PBL will make students to actively participate in higher-level of cognitive processes. The most important premise when designing the project, in this case a gearbox casing, is the multidisciplinary aspects as the same project will have continuity and will cover different contents throughout the different subjects in the specialization. The methodology used for defining and implementing the PBL model consists of: (i) the identification of the current main difficulties; (ii) the definition of the PBL model; (iii) the identification of the necessary contents per subject to be applied in the solving process of the PBL model; and (iv) the evaluation/assessment of the PBL model implementation. Finally, both the project and the different activities to be carried out in the different subjects involved in the PBL model are presented. In addition, the results obtained through a satisfaction survey performed by the students to collect their opinion will be also analysed to provide feedback for further improvement of the PBL model.This article has been supported by Universitat Politècnica de València, particularly by the Vice-rectorate for Digital Resources and Documentation (Vicerrectorado de Recursos Digitales y Documentación) and Vice-Rectorate for Studies, Quality and Accreditation (Vicerrectorado de Estudios, Calidad y Acreditación) under the Call for Learning + Teaching (Convocatoria A+D2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) and Project Code: A157. The authors would like to acknowledge the support of the Institute of Educational Sciences (Instituto de Ciencias de la Educación), the Evaluation and Monitoring Commission for Educational Innovation and Improvement Projects (Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) and Escuela Politécnica Superior de AlcoyMontava-Jorda, S.; Colomer Romero, V.; Martínez Sanz, AV.; Reig-Pérez, MJ.; López Esteve, FM. (2021). Implementation of Project-Based Learning at a Multidisciplinary Level of the Specialization in Design and Manufacture of Machines and Prototypes in the Degree of Mechanical Engineering. EDULEARN Proceedings (Internet). 7477-7483. https://doi.org/10.21125/edulearn.2021.1518S7477748

    Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-011-6056-9Despite polypropylene is one of the most used commodity plastics, its adhesion properties are remarkably restricted by its non-polar nature which leads to low wetting properties and, consequently, poor adhesion behavior. We report the use of ultraviolet photografting process of methyl methacrylate (MMA) monomer as an efficient chemical treatment for surface activation of polypropylene. Contact angle measurements are used for evaluating changes in polypropylene wetting properties together with surface free energy calculations. Chemical changes are showed in terms of the exposure time to UV radiation. Scanning electron microscopy has been used to evaluate topography changes in a qualitative way; atomic force microscopy has been used for a quantitative evaluation of surface changes in terms of roughness. The use of Fourier transformed infrared spectroscopy has revealed the nature of the chemical changes induced by the photografting process of MMA. © 2011 Springer Science+Business Media, LLC.This study is a part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion," with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies." Also, microscopy services at UPV are acknowledged for SEM and AFM support.Balart Gimeno, JF.; Fombuena Borrás, V.; Boronat Vitoria, T.; Reig Pérez, MJ.; Balart Gimeno, RA. (2012). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science. 47(5):2375-2383. doi:10.1007/s10853-011-6056-9S23752383475Novak I, Florian S (2001) J Mater Sci 36(20):4863. doi: 10.1023/A:1011895000500Sanchis MR et al (2007) J Appl Polym Sci 105(3):1077Sanchis R et al (2008) Int J Adhes Adhes 28(8):445Sanchis RM et al (2007) J Polym Sci Part B 45(17):2390Deng HP, Yang WT (2005) Eur Polym J 41(11):2685Lisboa P et al (2006) Appl Surf Sci 252(13):4397Wang YX et al (2005) Macromol Rapid Commun 26(2):87Xing CM, Deng JP, Yang WT (2005) Macromol Chem Phys 206(11):1106El Kholdi O et al (2004) J Appl Polym Sci 92(5):2803Piletsky SA et al (2000) Macromolecules 33(8):3092Susanto H, Ulbricht M (2007) Langmuir 23(14):7818Ulbricht M (1996) React Funct Polym 31(2):165Ulbricht M, Riedel M, Marx U (1996) J Membr Sci 120(2):239Villagra Di Carlo B, Carlos Gottifredi J, Claudio Habert A (2011) J Mater Sci 46(6):1850. doi: 10.1007/s10853-010-5012-4Yang GH et al (2001) Langmuir 17(1):211Kang ET et al (1996) J Mater Sci 31(5):1295. doi: 10.1007/BF00353109Zhu JW et al (2006) Macromol Chem Phys 207(1):75Kong LB, Deng JP, Yang WT (2006) Macromol Chem Phys 207(24):2311Xing CM, Deng JP, Yang WT (2002) Polym J 34(11):801Xing CM, Deng JP, Yang WT (2002) Polym J 34(11):809Janorkar AV, Metters AT, Hirt DE (2004) Macromolecules 37(24):9151Tan L, Deng JP, Yang WT (2004) Polym Adv Technol 15(9):523Deng JP, Yang WT, Ranby B (2001) J Appl Polym Sci 80(9):1426Deng JP, Yang WT (2005) J Appl Polym Sci 95(4):903Balart J et al (2010) J Appl Polym Sci 116(6):3256Kaczmarek H (1995) Polimery 40(6):333Khan MA, Shehrzade S, Hassan MM (2004) J Appl Polym Sci 92(1):18Ganan P, Mondragon I (2004) J Mater Sci 39(9):3121. doi: 10.1023/B:JMSC.0000025841.67124.c3Maerder E et al (2007) J Mater Sci 42(19):8047. doi: 10.1007/s10853-006-1311-1Zhao Y et al (2007) J Mater Sci 42(19):8287. doi: 10.1007/s10853-007-1624-8Xing CM, Deng JP, Yang WT (2005) J Appl Polym Sci 97(5):2026Srilatha T, Rao PR (2007) Asian J Chem 19(5):3755Moon JH et al. (2007) Progress Organ Coat 59(2):106Ramesh S et al (2007) Spectrochim Acta Part A 66(4–5):123

    Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems

    Full text link
    [EN] In an unbalanced linear three-phase electrical system, there are inefficient powers that increase the apparent power supplied by the network, line losses, machine malfunctions, etc. These inefficiencies are mainly due to the use of unbalanced loads. Unlike a three-wire unbalanced system, a four-wire system has zero sequence currents that circulate through the neutral wire and can be compensated by means of compensation equipment, which prevents it from being delivered by the network. To design a compensator that works with unbalanced voltages, it is necessary to consider the interactions between it and the other compensators used to compensate for negative-sequence currents and positive-sequence reactive currents. In this paper, through passive compensation, a new method is proposed to develop the zero sequence current compensation equipment. The method does not require iteration algorithms and is valid for unbalanced voltages. In addition, the interactions between all compensators are analyzed, and the necessary modifications in the calculations are proposed to obtain a total compensation. To facilitate the application of the method and demonstrate its validity, a case study is developed from a three-phase linear four-wire system with unbalanced voltages and loads. The results obtained are compared with other compensation methods that also use passive elements.This work is supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and the European Regional Development Fund (ERDF) under grant RTI2018-100732-B-C21.Montoya-Mira, R.; Blasco Espinosa, PA.; Diez-Aznar, J.; Montoya Villena, R.; Reig-Pérez, MJ. (2020). Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems. Applied Sciences. 10(5):1-23. https://doi.org/10.3390/app10051764S123105Sainz, L., Caro, M., & Caro, E. (2009). Analytical Study of the Series Resonance in Power Systems With the Steinmetz Circuit. IEEE Transactions on Power Delivery, 24(4), 2090-2098. doi:10.1109/tpwrd.2009.2028790Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724Poblador, M. L. A., & Lopez, G. A. R. (2013). Power calculations in nonlinear and unbalanced conditions according to IEEE Std 1459-2010. 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA). doi:10.1109/pepqa.2013.6614957IEEE Recommended Practice for Monitoring Electric Power Quality. (s. f.). doi:10.1109/ieeestd.2019.8796486Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., & Reig, M. J. (2019). Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Applied Sciences, 10(1), 113. doi:10.3390/app10010113San-Yi Lee, & Chi-Jui Wu. (1993). On-line reactive power compensation schemes for unbalanced three phase four wire distribution feeders. IEEE Transactions on Power Delivery, 8(4), 1958-1965. doi:10.1109/61.248308Otto, R. A., Putman, T. H., & Gyugyi, L. (1978). Principles and Applications of Static, Thyristor-Controlled Shunt Compensators. IEEE Transactions on Power Apparatus and Systems, PAS-97(5), 1935-1945. doi:10.1109/tpas.1978.354690Origa de Oliveira, L. C., Barros Neto, M. C., & de Souza, J. B. (s. f.). Load compensation in four-wire electrical power systems. PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409). doi:10.1109/icpst.2000.898206Li, E., Sheng, W., Wang, X., & Wang, B. (2011). Combined compensation strategies based on instantaneous reactive power theory for reactive power compensation and load balancing. 2011 International Conference on Electrical and Control Engineering. doi:10.1109/iceceng.2011.6057765Leon-Martinez, V., & Montanana-Romeu, J. (2014). Representation of load imbalances through reactances. Application to working standards. 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). doi:10.1109/ichqp.2014.6842894Czarnecki, L. S., & Haley, P. M. (2015). Unbalanced Power in Four-Wire Systems and Its Reactive Compensation. IEEE Transactions on Power Delivery, 30(1), 53-63. doi:10.1109/tpwrd.2014.2314599Czarnecki, L. S. (1989). Reactive and unbalanced currents compensation in three-phase asymmetrical circuits under nonsinusoidal conditions. IEEE Transactions on Instrumentation and Measurement, 38(3), 754-759. doi:10.1109/19.32187Czarnecki, L. S. (1988). Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Transactions on Instrumentation and Measurement, 37(1), 30-34. doi:10.1109/19.2658Pană, A., Băloi, A., & Molnar-Matei, F. (2018). From the Balancing Reactive Compensator to the Balancing Capacitive Compensator. Energies, 11(8), 1979. doi:10.3390/en1108197

    Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid)

    Full text link
    Poly(lactic acid), PLA, is a polyester that can be produced from lactic acid derived from renewable resources. This polymer offers attracting uses in packaging industry due to its biodegradability and high tensile strength. However, PLA is quite brittle, which limits its applications. To overcome this drawback, PLA was plasticized with epoxy-type plasticizer derived from a fatty acid, octyl epoxy stearate (OES) at different loadings (1, 3, 5, 10, 15, and 20 phr). The addition of OES decreases the glass transition temperature and provides a remarkable increase in elongation at break and impact-absorbed energy. Plasticizer saturation occurs at relatively low concentrations of about 5 phr OES; higher concentration leads to phase separation as observed by field emission scanning electron microscopy (FESEM). Optimum balanced mechanical properties are obtained at relatively low concentrations of OES (5 phr), thus indicating the usefulness of this material as environmentally friendly plasticizer for PLA industrial formulations.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. Authors also thank to "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support.Ferri Azor, JM.; Samper Madrigal, MD.; García Sanoguera, D.; Reig Pérez, MJ.; Fenollar Gimeno, OÁ.; Balart Gimeno, RA. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science. 51(11):5356-5366. https://doi.org/10.1007/s10853-016-9838-2S535653665111Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15(11):19924–19937. doi: 10.3390/ijms151119924Arrieta MP, Fortunati E, Dominici F, Lopez J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. doi: 10.1016/j.carbpol.2014.12.056Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN, DeBruyn JM, Lee J, Wszelaki AL (2015) Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23(3):302–315. doi: 10.1007/s10924-015-0716-9Lin C-M, Lin C-H, Huang Y-T, Lou C-W, Lin J-H (2013) Mechanical and electrical properties of the polyaniline (PANI)/polylactic acid (PLA) nonwoven fabric. In: Kida K (ed), Machine design and manufacturing engineering II, Pts 1 and 2, vols 365–366. pp 1074–1077. doi: 10.4028/www.scientific.net/AMM.365-366.1074Serafini Immich AP, Lis Arias M, Carreras N, Luis Boemo R, Antonio Tornero J (2013) Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng C-Mater Biol Appl 33(7):4002–4008. doi: 10.1016/j.msec.2013.05.034Llorens E, Calderon S, del Valle LJ, Puiggali J (2015) Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C-Mater Biol Appl 50:74–84. doi: 10.1016/j.msec.2015.01.100Nainar SMM, Begum S, Ansari MNM, Hoque ME, Aini SS, Ng MH, Ruszymah BHI (2014) Effect of compatibilizers on in vitro biocompatibility of PLA-HA bioscaffold. Bioinspired Biomim Nanobiomater 3(4):208–216. doi: 10.1680/bbn.14.00014Huang R, Zhu X, Tu H, Wan A (2014) The crystallization behavior of porous poly(lactic acid) prepared by modified solvent casting/particulate leaching technique for potential use of tissue engineering scaffold. Mater Lett 136:126–129. doi: 10.1016/j.matlet.2014.08.044Yesid Gomez-Pachon E, Manuel Sanchez-Arevalo F, Sabina FJ, Maciel-Cerda A, Montiel Campos R, Batina N, Morales-Reyes I, Vera-Graziano R (2013) Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. J Mater Sci 48(23):8308–8319. doi: 10.1007/s10853-013-7644-7Zhang J, Yin H-M, Hsiao BS, Zhong G-J, Li Z-M (2014) Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. J Mater Sci 49(4):1648–1658. doi: 10.1007/s10853-013-7848-xArmentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jimenez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Exp Polym Lett 9(7):583–596. doi: 10.3144/expresspolymlett.2015.55Patricia Arrieta M, del Mar Castro-Lopez M, Rayon E, Fernando Barral-Losada L, Manuel Lopez-Vilarino J, Lopez J, Victoria Gonzalez-Rodriguez M (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62(41):10170–10180. doi: 10.1021/jf5029812He Y, Hu Z, Ren M, Ding C, Chen P, Gu Q, Wu Q (2014) Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. J Mater Sci-Mater Med 25(2):561–571. doi: 10.1007/s10856-013-5073-4Vieira AC, Vieira JC, Ferra JM, Magalhaes FD, Guedes RM, Marques AT (2011) Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 4(3):451–460. doi: 10.1016/j.jmbbm.2010.12.006K-y Zhang, X-h Ran, Y-g Zhuang, Yao B, L-s Dong (2009) Blends of poly(lactic acid) with thermoplastic acetylated starch. Chem Res Chin Univ 25(5):748–753Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci 130(6):4576–4580. doi: 10.1002/app.39742Yu Y, Cheng Y, Ren J, Cao E, Fu X, Guo W (2015) Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. J Appl Polym Sci 132(16). doi: 10.1002/app.41808Nazari T, Garmabi H (2014) Polylactic acid/polyethylene glycol blend fibres prepared via melt electrospinning: effect of polyethylene glycol content. Micro Nano Lett 9(10):686–690. doi: 10.1049/mnl.2013.0735Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188. doi: 10.1016/j.polymer.2006.03.115Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658. doi: 10.1016/j.polymdegradstab.2012.11.009Dobircau L, Delpouve N, Herbinet R, Domenek S, Le Pluart L, Delbreilh L, Ducruet V, Dargent E (2015) Molecular mobility and physical ageing of plasticized poly(lactide). Polym Eng Sci 55(4):858–865. doi: 10.1002/pen.23952Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly(lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polymer J 48(2):404–415. doi: 10.1016/j.eurpolymj.2011.12.001Tsou C-H, Suen M-C, Yao W-H, Yeh J-T, Wu C-S, Tsou C-Y, Chiu S-H, Chen J-C, Wang RY, Lin S-M, Hung W-S, De Guzman M, Hu C-C, Lee K-R (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 7(8):5617–5632. doi: 10.3390/ma7085617Jing J, Qa Qiao, Jin Y, Ma C, Cai H, Meng Y, Cai Z, Feng D (2012) Molecular and mesoscopic dynamics simulations on the compatibility of PLA/plasticizer blends. Chin J Chem 30(1):133–138. doi: 10.1002/cjoc.201180454Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44(25):7679–7688. doi: 10.1016/j.polymer.2003.09.055Notta-Cuvier D, Murariu M, Odent J, Delille R, Bouzouita A, Raquez J-M, Lauro F, Dubois P (2015) Tailoring polylactide properties for automotive applications: effects of co-addition of halloysite Nanotubes and selected plasticizer. Macromol Mater Eng 300(7):684–698. doi: 10.1002/mame.201500032Carbonell-Verdu A, Bernardi L, Garcia-Garcia D, Sanchez-Nacher L, Balart R (2015) Development of environmentally friendly composite matrices from epoxidized cottonseed oil. Eur Polymer J 63:1–10. doi: 10.1016/j.eurpolymj.2014.11.043Samper MD, Fombuena V, Boronat T, Garcia-Sanoguera D, Balart R (2012) Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J Am Oil Chem Soc 89(8):1521–1528. doi: 10.1007/s11746-012-2041-ySamper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Mater Des 72:9–15. doi: 10.1016/j.matdes.2015.02.002Samper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Compos Part B Eng 71:203–209. doi: 10.1016/j.compositesb.2014.11.034Bueno-Ferrer C, Garrigos MC, Jimenez A (2010) Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polym Degrad Stab 95(11):2207–2212. doi: 10.1016/j.polymdegradstab.2010.01.027Bueno-Ferrer C, Jimenez A, Garrigos MC (2010) Migration analysis of epoxidized soybean oil and other plasticizers in commercial lids for food packaging by gas chromatography-mass spectrometry. Food Addit Contam Part a—Chem Anal Control Expo Risk Assess 27(10):1469–1477. doi: 10.1080/19440049.2010.502129Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2010) Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. J Mater Sci 45(16):4406–4413. doi: 10.1007/s10853-010-4520-6Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2012) Characterization of the curing process of vinyl plastisols with epoxidized linseed oil as a natural-based plasticizer. J Appl Polym Sci 124(3):2550–2557. doi: 10.1002/app.34645Semsarzadeh MA, Mehrabzadeh M, Arabshahi SS (2005) Mechanical and thermal properties of the plasticized PVC-ESBO. Iran Polym J 14(9):769–773Chieng BW, Ibrahim NA, Then YY, Loo YY (2014) Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules 19(10):16024–16038. doi: 10.3390/molecules191016024Prempeh N, Li J, Liu D, Das K, Maiti S, Zhang Y (2014) Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: a comparative study. Polym Sci Ser A 56(6):856–863. doi: 10.1134/s0965545x14060182Santos EF, Oliveira RVB, Reiznautt QB, Samios D, Nachtigall SMB (2014) Sunflower-oil biodiesel-oligoesters/polylactide blends: plasticizing effect and ageing. Polym Test 39:23–29. doi: 10.1016/j.polymertesting.2014.07.010Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866. doi: 10.1016/j.polymer.2007.09.020Arrieta MP, Lopez J, Ferrandiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32(4):760–768. doi: 10.1016/j.polymertesting.2013.03.016Arrieta MP, Samper MD, Lopez J, Jimenez A (2014) Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ 22(4):460–470. doi: 10.1007/s10924-014-0654-

    Using information and communication technologies in computer programming of activities in flexible manufacturing cells using petri nets

    Full text link
    [EN] A very useful tool for the programming of tasks in flexible manufacturing cells is the Petri nets. Like a representation tool, it allows modelling and analyzing the properties of any designed system to work in parallel, being able to create graphically a scheme that allows to visualize the system and to simulate the evolution of the same one before its real execution. This way a programming of computer science character for one more a more graphical programming is avoided, being able with no need to resort to her of ample knowledge on numerical control and flexible manufacturing systems[ES] Una herramienta muy útil para la programación de actividades en células de fabricación flexible son las Redes de Petri. Como herramienta de representación, permiten modelizar y analizar las propiedades de cualquier sistema diseñado para trabajar en paralelo, pudiéndose crear gráficamente un esquema que permite visualizar el sistema y simular la evolución del mismo antes de su ejecución real. De esta manera se evita una programación de carácter informático en pro de una programación más gráfica, pudiendo recurrir a ella sin necesidad de amplios conocimientos sobre control numérico y sistemas de fabricación flexible.Juárez Varón, D.; Peydro, MA.; Reig Pérez, MJ.; Segui Llinares, VJ. (2012). Empleo de tecnologías de la información y comunicación en la programación por ordenador de actividades en células de fabricación flexible mediante redes de Petri. 3c Tic. (2):43-50. http://hdl.handle.net/10251/34374S4350

    Advanced high strength steel (AHSS) TWIP: A door to the future in metal forming

    Full text link
    The last decades have been characterized by a fast evolution of cars. This work shows the evolution of vehicle weight. It shows the response of car manufacturers using new materials and production methods that allow lighter vehicles with lower consumption, cheaper and with lower influence on the greenhouse effect. One of the materials which means a most interesting change is the TWIP steel. This material is characterized by its high strength, his exceptional strain and excellent formability as well as lower energy consumption in their manufacture. TWIP steel are changing towards cheaper compositions and higher performance, and it's going to be great influence in the vehicle weight reduction in the next years.Pla-Ferrando, R.; Sanchez-Caballero, S.; Reig Pérez, MJ.; Sellés Cantó, MÁ.; Segui Llinares, VJ. (2012). Advanced high strength steel (AHSS) TWIP: A door to the future in metal forming. AIP Conference Proceedings. 1431:65-73. doi:10.1063/1.4707551S6573143

    Description of Diegoglossidium maradonai n. g. and n. sp. (Digenea: Alloglossidiidae) through an integrative taxonomy approach, with an amended diagnosis of the family

    Get PDF
    This paper describes Diegloglossidium maradonai n. g., n. sp. a parasite of the intestine of Hoplosternum littorale (Hancock) from La Plata River basin. The new genus is morphologically similar to members of Alloglossidiidae and Macroderoidiidae although they also share some traits observed in both families. Those families can be differentiated from each other by the combination of morphological features, including the density and distribution of the tegumental spines, the distribution of the vitelline follicles and the extent of the post-testicular space. The molecular analyses based on the large subunit of the ribosomal RNA gene, and the internal transcribed spacer (ITS) regions including ITS1, 5.8S and ITS2 unequivocally place the new genus in the family Alloglossidiidae which is amended based on new observed features. Diegoglossidium n. g. is characterized by a combination of characteristics, being most notably the presence of a deeply lobed ovary. Lastly, the geographical distribution and host associations of the two closely related Neotropical genera of Alloglossidiidae: Magnivitellinum and Diegoglossidium are discussed, and the host and distribution range of Magnivitellinum saltaensis is expanded into Argentina.Fil: Montes, Martin Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Arredondo, Nathalia Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Barneche, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Balcazar, Dario Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Cardarella, G. Reig. Universidad Bernardo O'higgins; ChileFil: Martorelli, Sergio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Pérez Ponce de Leon, G. Universidad Nacional Autónoma de México; Méxic

    Análisis de aceros AHSS en el nuevo simulador de deformación plástica HSMFS

    Full text link
    El presente documento muestra las capacidades del nuevo simulador de deformación plástica, de reciente construcción, y capaz de realizar ensayos en cualquier tipo de material, hasta una fuerza de 10 kN. Además, se exponen otras líneas de investigación del grupo.Sellés Cantó, MÁ.; Sanchez-Caballero, S.; Pla-Ferrando, R.; Reig Pérez, MJ.; Segui Llinares, VJ.; Eixerés Tomás, B.; Pérez Bernabeu, E. (2013). Análisis de aceros AHSS en el nuevo simulador de deformación plástica HSMFS. Compobell, S.L. http://hdl.handle.net/10251/73772

    Modelization of three-layered polymer coated steel-strip ironing process using a neural network

    Full text link
    [EN] An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural networkThis work was supported by the “Universitat Politècnica de València” [grant number PAID-06-10-003-305]Sellés Cantó, MÁ.; Schmid, S.; Sanchez-Caballero, S.; Segui Llinares, VJ.; Reig Pérez, MJ.; Pla-Ferrando, R. (2012). Modelization of three-layered polymer coated steel-strip ironing process using a neural network. AIP Conference Proceedings. 1431:733-739. https://doi.org/10.1063/1.4707630S733739143
    corecore