26,843 research outputs found

    Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells

    Get PDF
    Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane

    Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple

    Get PDF
    Zirconium carbide is used as a catalyst in a REDOX cell for the oxidation of chromous ions to chromic ions and for the reduction of chromic ions to chromous ions. The zirconium carbide is coated on an inert electronically conductive electrode which is present in the anode fluid of the cell

    Retransmission of water resources data using the ERTS-1 data collection system

    Get PDF
    There are no author-identified significant results in this report

    Pulse pedestal suppression using four-wave mixing in an SOA

    Get PDF
    Experimental results are presented demonstrating how four-wave mixing in a semiconductor optical amplifier can be used to remove pulse pedestals introduced due to nonlinearities which occur upon pulse propagation in an optical system. Such pedestals would degrade the performance of an optical time-division-multiplexed system due to coherent interaction between channels. An improvement of the temporal pulse suppression ratio to greater than 30 dB is achieved regardless of the level of the pulse pedestal on the input signal. This improvement takes place simultaneously with wavelength conversion and compression of the optical pulse

    Numerical analysis of four-wave mixing between 2 ps mode-locked laser pulses in a tensile-strained bulk SOA

    Get PDF
    A numerical model of four-wave mixing between 2-ps pulses in a tensile-strained bulk semiconductor optical amplifier is presented. The model utilizes a modified Schrodinger equation to model the pulse propagation. The Schrodinger equation parameters such as the material gain first and second order dispersion, linewidth enhancement factors and optical loss coefficient are obtained using a previously developed steady-state model. The predicted four-wave mixing pulse characteristics show reasonably good agreement with experimental pulse characteristics obtained using frequency resolved optical gating

    Viscous dark fluid Universe: a unified model of the dark sector?

    Full text link
    The Universe is modeled as consisting of pressureless baryonic matter and a bulk viscous fluid which is supposed to represent a unified description of the dark sector. In the homogeneous and isotropic background the \textit{total} energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value of the deceleration parameter. Moreover, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis. A problem of simple bulk viscous models, however, is the behavior of the gravitational potential and the reproduction of the CMB power spectrum.Comment: 12 pages, 3 figures, contributed paper to 8th Friedmann Seminar, 30 May to 3 June 2011, Rio de Janeiro, Brazi

    Preparation and characterization of electrodes for the NASA Redox storage system

    Get PDF
    Electrodes for the Redox energy storage system based on iron and chromium chloride reactants is discussed. The physical properties of several lots of felt were determined. Procedures were developed for evaluating electrode performance in lab scale cells. Experimental procedures for evaluating electrodes by cyclic voltammetry are described which minimize the IR losses due to the high internal resistance in the felt (distributed resistance). Methods to prepare electrodes which reduced the coevolution of hydrogen at the chromium electrode and eleminate the drop in voltage on discharge occasionally seen with previous electrodes were discussed. Single cells of 0.3329 ft area with improved membranes and electrodes are operating at over 80% voltage efficiency and coulombic efficiencies of over 98% at current densities of 16 to 20 amp % ft
    corecore