191 research outputs found

    Palaeo plant diversity in subtropical Africa – ecological assessment of a conceptual model of climate–vegetation interaction

    Get PDF
    We here critically re-assess a conceptual model dealing with the potential effect of plant diversity on climate–vegetation feedback, and provide an improved version adjusted to plant types that prevailed during the African Humid Period (AHP). Our work contributes to the understanding of the timing and abruptness of vegetation decline at the end of the AHP, investigated by various working groups during the past two decades using a wide range of model and palaeoproxy reconstruction approaches. While some studies indicated an abrupt collapse of vegetation at the end of the AHP, others suggested a gradual decline. Claussen et al. (2013) introduced a new aspect in the discussion, proposing that plant diversity in terms of moisture requirements could affect the strength of climate–vegetation feedback. In a conceptual model study, the authors illustrated that high plant diversity could stabilize an ecosystem, whereas a reduction in plant diversity might allow for an abrupt regime shift under gradually changing environmental conditions. Based on recently published pollen data and the current state of ecological literature, we evaluate the representation of climate–vegetation feedback in this conceptual approach, and put the suggested conclusions into an ecological context. In principle, the original model reproduces the main features of different plant types interacting together with climate although vegetation determinants other than precipitation are neglected. However, the model cannot capture the diversity of AHP vegetation. Especially tropical gallery forest taxa, indirectly linked to local precipitation, are not appropriately represented. In order to fill the gaps in the description of plant types regarding AHP diversity, we modify the original model in four main aspects. First, the growth ranges in terms of moisture requirements are extended by upper limits to represent full environmental envelopes. Second, data-based AHP plant types replace the hypothetical plant types. Third, the tropical gallery forest type follows the gradual insolation forcing with a linear approximation because it relies more on large scale climate than on regional precipitation amounts. Fourth, we replace the dimensionless vegetation cover fractions with individual effective leaf areas to capture different contributions to climate–vegetation feedback. These adjustments allow for the consideration of a broader spectrum of plant types, plant-climate feedbacks, and implicitly for plant-plant interactions. With the consideration of full environmental envelopes and the prescribed retreat of the tropical gallery forest type we can simulate a diverse mosaic-like environment as it was reconstructed from pollen. Transient simulations of this diverse environment support the buffering effect of high functional diversity on ecosystem performance and precipitation, concluded by Claussen et al. (2013) from the simple approach. Sensitivity studies with different combinations of plant types highlight the importance of plant composition on system stability, and the stabilizing or destabilizing potential a single functional type may inherit. In a broader view, the adjusted model provides a useful tool to study the roles of real plant types in an ecosystem and their combined climate–vegetation feedback under changing precipitation regimes

    Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change

    No full text
    Anthropogenic land cover change (ALCC) is one of the few climate forcings with still unknown sign of their climate response. Major uncertainty results from the often counteracting temperature responses to biogeochemical as compared to biogeophysical effects. Here, we separate the strength of these two effects for ALCC during the last millennium. We add unprecedented detail by (i) using a coupled atmosphere/ocean general circulation model (GCM), and (ii) applying a high-detail reconstruction of historical ALCC. We find that biogeophysical effects have a slight cooling influence on global mean temperature (-0.03 K in the 20th century), while biogeochemical effects lead to strong warming (0.16-0.18 K). During the industrial era, both effects cause significant changes in certain regions; only few regions, however, experience biogeophysical cooling strong enough to dominate the overall temperature response. This study therefore suggests that the climate response to historical ALCC, both globally and in most regions, is dominated by the rise in CO2 caused by ALCC emissions

    Two drastically different climate states on an Earth-like terra-planet

    No full text
    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an overland recycling mechanism hints at the possibility of a wider habitable zone for Earth-like terra-planets at low obliquities

    Contribution of anthropogenic land cover change emissions to preindustrial atmospheric CO2

    No full text
    Based on a recent reconstruction of anthropogenic land cover change (ALCC), we derive the associated CO2 emissions since 800 AD by two independent methods: a bookkeeping approach and a process model. The results are compared with the pre-industrial development of atmospheric CO2 known from antarctic ice cores. Our results show that pre-industrial CO2 emissions from ALCC have been relevant for the pre-industrial carbon cycle, although before 1750 AD their trace in atmospheric CO2 is obscured by other processes of similar magnitude. After 1750 AD, the situation is different: the steep increase in atmospheric CO2 until 1850 AD-this is before fossil fuel emissions rose to significant values-is to a substantial part explained by growing emissions from ALCC. © 2010 The Authors Tellus B © 2010 International Meteorological Institute in Stockholm

    Past land use decisions have increased mitigation potential of reforestation

    Get PDF
    Anthropogenic land cover change (ALCC) influences global mean temperatures via counteracting effects: CO2 emissions contribute to global warming, while biogeophysical effects, in particular the increase in surface albedo, often impose a cooling influence. Previous studies of idealized, large-scale deforestation found that albedo cooling dominates over CO 2 warming in boreal regions, indicating that boreal reforestation is not an effective mitigation tool. Here we show the importance of past land use decisions in influencing the mitigation potential of reforestation on these lands. In our simulations, CO2 warming dominates over albedo cooling because past land use decisions resulted in the use of the most productive land with larger carbon stocks and less snow than on average. As a result past land use decisions extended CO2 dominance to most agriculturally important regions in the world, suggesting that in most places reversion of past land cover change could contribute to climate change mitigation. While the relative magnitude of CO2 and albedo effects remains uncertain, the historical land use pattern is found to be biased towards stronger CO2 and weaker albedo effects as compared to idealized large-scale deforestation. Copyright 2011 by the American Geophysical Union

    Radiative forcing from anthropogenic land cover change since AD 800

    Get PDF
    We calculate the radiative forcing (RF) from surface albedo changes over the last millennium applying a recently published, population-based reconstruction of anthropogenic land cover change (ALCC). This study thus allows for the first time to assess anthropogenic effects on climate during the pre-industrial era at high spatial and temporal detail. We find that the RF is small throughout the pre-industrial period on the global scale (negative with a magnitude less than 0.05 W/m2) and not strong enough to explain the cooling reconstructed from climate proxies between A.D. 1000 and 1900. For the regional scale, however, our results suggest an early anthropogenic impact on climate: Already in A.D. 800, the surface energy balance was altered by ALCC at a strength comparable to present-day greenhouse gas forcing, e.g., −2.0 W/m2 are derived for parts of India for that time. Several other regions exhibit a distinct variability of RF as a result of major epidemics and warfare, with RF changes in the order of 0.1 W/m2 within just one century

    Global biogeophysical interactions between forest and climate

    No full text
    In two sensitivity experiments using the Earth System Model of the Max Planck Institute for Meteorology (MPI‐ESM), the vegetation cover of the ice‐free land surface has been set worldwide to either forest or grassland in order to quantify the quasi‐equilibrium response of the atmosphere and ocean components to extreme land surface boundary conditions. After 400 years of model integration, the global mean annual surface temperature increased by 0.7°K and declined by 0.6°K in the forest and grassland simulations, respectively, as compared to the control simulation. Thereafter, the geographic distribution of vegetation has been allowed to respond interactively to climate. After subsequent 500 years of interactive climate‐vegetation dynamics, both forest and grassland simulations converged to essentially the same climate state as in the control simulation. This convergence suggests an absence of multiple climate‐forest states in the current version of the MPI‐ESM

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure
    • 

    corecore