4,456 research outputs found
Keeping a Quantum Bit Alive by Optimized -Pulse Sequences
A general strategy to maintain the coherence of a quantum bit is proposed.
The analytical result is derived rigorously including all memory and
back-action effects. It is based on an optimized -pulse sequence for
dynamic decoupling extending the Carr-Purcell-Meiboom-Gill (CPMG) cycle. The
optimized sequence is very efficient, in particular for strong couplings to the
environment.Comment: 4 pages, 2 figures; revised version with additional references for
better context, more stringent discussio
A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents
A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents
Quantum error correction benchmarks for continuous weak parity measurements
We present an experimental procedure to determine the usefulness of a
measurement scheme for quantum error correction (QEC). A QEC scheme typically
requires the ability to prepare entangled states, to carry out multi-qubit
measurements, and to perform certain recovery operations conditioned on
measurement outcomes. As a consequence, the experimental benchmark of a QEC
scheme is a tall order because it requires the conjuncture of many elementary
components. Our scheme opens the path to experimental benchmarks of individual
components of QEC. Our numerical simulations show that certain parity
measurements realized in circuit quantum electrodynamics are on the verge of
being useful for QEC
Flux Qubits and Readout Device with Two Independent Flux Lines
We report measurements on two superconducting flux qubits coupled to a
readout Superconducting QUantum Interference Device (SQUID). Two on-chip flux
bias lines allow independent flux control of any two of the three elements, as
illustrated by a two-dimensional qubit flux map. The application of microwaves
yields a frequency-flux dispersion curve for 1- and 2-photon driving of the
single-qubit excited state, and coherent manipulation of the single-qubit state
results in Rabi oscillations and Ramsey fringes. This architecture should be
scalable to many qubits and SQUIDs on a single chip.Comment: 5 pages, 4 figures, higher quality figures available upon request.
Submitted to PR
Fault-Tolerant Thresholds for Encoded Ancillae with Homogeneous Errors
I describe a procedure for calculating thresholds for quantum computation as
a function of error model given the availability of ancillae prepared in
logical states with independent, identically distributed errors. The thresholds
are determined via a simple counting argument performed on a single qubit of an
infinitely large CSS code. I give concrete examples of thresholds thus
achievable for both Steane and Knill style fault-tolerant implementations and
investigate their relation to threshold estimates in the literature.Comment: 14 pages, 5 figures, 3 tables; v2 minor edits, v3 completely revised,
submitted to PR
Lattice dynamics and electron-phonon coupling in Sr2RuO4
The lattice dynamics in SrRuO has been studied by inelastic neutron
scattering combined with shell-model calculations. The in-plane bond-stretching
modes in SrRuO exhibit a normal dispersion in contrast to all
electronically doped perovskites studied so far. Evidence for strong electron
phonon coupling is found for c-polarized phonons suggesting a close connection
with the anomalous c-axis charge transport in SrRuO.Comment: 11 pages, 8 figures 2 table
Exponential complexity of an adiabatic algorithm for an NP-complete problem
We prove an analytical expression for the size of the gap between the ground
and the first excited state of quantum adiabatic algorithm for the
3-satisfiability, where the initial Hamiltonian is a projector on the subspace
complementary to the ground state. For large problem sizes the gap decreases
exponentially and as a consequence the required running time is also
exponential.Comment: 5 pages, 2 figures; v3. published versio
Gastrointestinal stromal tumors: ESMO Clinical Recommendations for diagnosis, treatment and follow-up
Dispersion of the high-energy phonon modes in NdCeCuO
The dispersion of the high-energy phonon modes in the electron doped
high-temperature superconductor NdCeCuO has been studied
by inelastic neutron scattering. The frequencies of phonon modes with Cu-O
bond-stretching character drop abruptly when going from the Brillouin zone
center along the [100]-direction; this dispersion is qualitatively similar to
observations in the hole-doped cuprates. We also find a softening of the
bond-stretching modes along the [110]-direction but which is weaker and
exhibits a sinusoidal dispersion. The phonon anomalies are discussed in
comparison to hole-doped cuprate superconductors and other metallic
perovskites
A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states
We prove that universal quantum computation is possible using only (i) the
physically natural measurement on two qubits which distinguishes the singlet
from the triplet subspace, and (ii) qubits prepared in almost any three
different (potentially highly mixed) states. In some sense this measurement is
a `more universal' dynamical element than a universal 2-qubit unitary gate,
since the latter must be supplemented by measurement. Because of the rotational
invariance of the measurement used, our scheme is robust to collective
decoherence in a manner very different to previous proposals - in effect it is
only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous
middle name [12
- …
