2,604 research outputs found

    Dispersion of the high-energy phonon modes in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4

    Full text link
    The dispersion of the high-energy phonon modes in the electron doped high-temperature superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4 has been studied by inelastic neutron scattering. The frequencies of phonon modes with Cu-O bond-stretching character drop abruptly when going from the Brillouin zone center along the [100]-direction; this dispersion is qualitatively similar to observations in the hole-doped cuprates. We also find a softening of the bond-stretching modes along the [110]-direction but which is weaker and exhibits a sinusoidal dispersion. The phonon anomalies are discussed in comparison to hole-doped cuprate superconductors and other metallic perovskites

    Entangling flux qubits with a bipolar dynamic inductance

    Full text link
    We propose a scheme to implement variable coupling between two flux qubits using the screening current response of a dc Superconducting QUantum Interference Device (SQUID). The coupling strength is adjusted by the current bias applied to the SQUID and can be varied continuously from positive to negative values, allowing cancellation of the direct mutual inductance between the qubits. We show that this variable coupling scheme permits efficient realization of universal quantum logic. The same SQUID can be used to determine the flux states of the qubits.Comment: 4 pages, 4 figure

    Electron-phonon coupling in the conventional superconductor YNi2_2B2_2C at high phonon energies studied by time-of-flight neutron spectroscopy

    Full text link
    We report an inelastic neutron scattering investigation of phonons with energies up to 159 meV in the conventional superconductor YNi2_2B2_2C. Using the SWEEP mode, a newly developed time-of-flight technique involving the continuous rotation of a single crystal specimen, allowed us to measure a four dimensional volume in (Q,E) space and, thus, determine the dispersion surface and linewidths of the A1gA_{1g} (~ 102 meV) and AuA_u (~ 159 meV) type phonon modes for the whole Brillouin zone. Despite of having linewidths of Γ=10meV\Gamma = 10 meV, A1gA_{1g} modes do not strongly contribute to the total electron-phonon coupling constant λ\lambda. However, experimental linewidths show a remarkable agreement with ab-initio calculations over the complete phonon energy range demonstrating the accuracy of such calculations in a rare comparison to a comprehensive experimental data set.Comment: accepted for publication in PR

    Noise Thresholds for Higher Dimensional Systems using the Discrete Wigner Function

    Full text link
    For a quantum computer acting on d-dimensional systems, we analyze the computational power of circuits wherein stabilizer operations are perfect and we allow access to imperfect non-stabilizer states or operations. If the noise rate affecting the non-stabilizer resource is sufficiently high, then these states and operations can become simulable in the sense of the Gottesman-Knill theorem, reducing the overall power of the circuit to no better than classical. In this paper we find the depolarizing noise rate at which this happens, and consequently the most robust non-stabilizer states and non-Clifford gates. In doing so, we make use of the discrete Wigner function and derive facets of the so-called qudit Clifford polytope i.e. the inequalities defining the convex hull of all qudit Clifford gates. Our results for robust states are provably optimal. For robust gates we find a critical noise rate that, as dimension increases, rapidly approaches the the theoretical optimum of 100%. Some connections with the question of qudit magic state distillation are discussed.Comment: 14 pages, 1 table; Minor changes vs. version

    Deterministic Modularity Optimization

    Get PDF
    We study community structure of networks. We have developed a scheme for maximizing the modularity Q based on mean field methods. Further, we have defined a simple family of random networks with community structure; we understand the behavior of these networks analytically. Using these networks, we show how the mean field methods display better performance than previously known deterministic methods for optimization of Q.Comment: 7 pages, 4 figures, minor change

    Partitioning and modularity of graphs with arbitrary degree distribution

    Full text link
    We solve the graph bi-partitioning problem in dense graphs with arbitrary degree distribution using the replica method. We find the cut-size to scale universally with . In contrast, earlier results studying the problem in graphs with a Poissonian degree distribution had found a scaling with ^1/2 [Fu and Anderson, J. Phys. A: Math. Gen. 19, 1986]. The new results also generalize to the problem of q-partitioning. They can be used to find the expected modularity Q [Newman and Grivan, Phys. Rev. E, 69, 2004] of random graphs and allow for the assessment of statistical significance of the output of community detection algorithms.Comment: Revised version including new plots and improved discussion of some mathematical detail

    A Reciprocal Cell–Cell Interaction Mediated by NT-3 and Neuregulins Controls the Early Survival and Development of Sympathetic Neuroblasts

    Get PDF
    Neurotrophin 3 (NT-3) can support the survival of some embryonic sympathetic neuroblasts before they become nerve growth factor dependent. We show that NT-3 is produced in vivo by nonneuronal cells neighboring embryonic sympathetic ganglia. NT-3 mRNA is produced by these nonneuronal cells in vitro and is up-regulated by platelet-derived growth factor, ciliary neurotrophic factor, and glial growth factor 2 (a neuregulin). Nonneuronal cell–conditioned medium promotes survival and induces TrkA expression in isolated sympathetic neuroblasts, and this activity is blocked by anti-NT-3 antibody. Neuroblasts also enhance NT-3 production by nonneuronal cells. Neuroblasts synthesize several forms of neuregulin, and antibodies to neuregulin attenuate the effect of the neuroblasts on the nonneuronal cells. These data suggest a reciprocal cell–cell interaction, in which neuroblast-derived neuregulins promote NT-3 production by neighboring nonneuronal cells, which in turn promotes neuroblast survival and further differentiation

    Precision characterisation of two-qubit Hamiltonians via entanglement mapping

    Full text link
    We show that the general Heisenberg Hamiltonian with non-uniform couplings can be characterised by mapping the entanglement it generates as a function of time. Identification of the Hamiltonian in this way is possible as the coefficients of each operator control the oscillation frequencies of the entanglement function. The number of measurements required to achieve a given precision in the Hamiltonian parameters is determined and an efficient measurement strategy designed. We derive the relationship between the number of measurements, the resulting precision and the ultimate discrete error probability generated by a systematic mis-characterisation, when implementing two-qubit gates for quantum computing.Comment: 6 Pages, 3 figure
    • …
    corecore