147 research outputs found

    The origin recognition core complex regulates dendrite and spine development in postmitotic neurons

    Get PDF
    The origin recognition complex (ORC) ensures exactly one round of genome replication per cell cycle through acting as a molecular switch that precisely controls the assembly, firing, and inactivation of the replication initiation machinery. Recent data indicate that it may also coordinate the processes of mitosis and cytokinesis and ensure the proper distribution of replicated genome to daughter cells. We have found that the ORC core subunits are highly expressed in the nervous system. They are selectively localized to the neuronal somatodendritic compartment and enriched in the membrane fraction. siRNA knockdown of ORC subunits dramatically reduced dendritic branch formation and severely impeded dendritic spine emergence. Expression of ORC ATPase motif mutants enhanced the branching of dendritic arbors. The ORC core complex thus appears to have a novel role in regulating dendrite and dendritic spine development in postmitotic neurons

    BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin–β-catenin interactions

    Get PDF
    Neurons of the vertebrate central nervous system have the capacity to modify synapse number, morphology, and efficacy in response to activity. Some of these functions can be attributed to activity-induced synthesis and secretion of the neurotrophin brain-derived neurotrophic factor (BDNF); however, the molecular mechanisms by which BDNF mediates these events are still not well understood. Using time-lapse confocal analysis, we show that BDNF mobilizes synaptic vesicles at existing synapses, resulting in small clusters of synaptic vesicles “splitting” away from synaptic sites. We demonstrate that BDNF's ability to mobilize synaptic vesicle clusters depends on the dissociation of cadherin–β-catenin adhesion complexes that occurs after tyrosine phosphorylation of β-catenin. Artificially maintaining cadherin–β-catenin complexes in the presence of BDNF abolishes the BDNF-mediated enhancement of synaptic vesicle mobility, as well as the longer-term BDNF-mediated increase in synapse number. Together, this data demonstrates that the disruption of cadherin–β-catenin complexes is an important molecular event through which BDNF increases synapse density in cultured hippocampal neurons

    Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation

    Get PDF
    Morphogenesis of a vascular network requires dynamic vessel growth and regression. To investigate the cellular mechanism underlying this process, we deleted focal adhesion kinase (FAK), a key signaling mediator, in endothelial cells (ECs) using Tie2-Cre mice. Targeted FAK depletion occurred efficiently early in development, where mutants exhibited a distinctive and irregular vasculature, resulting in hemorrhage and lethality between embryonic day (e) 10.5 and 11.5. Capillaries and intercapillary spaces in yolk sacs were dilated before any other detectable abnormalities at e9.5, and explants demonstrate that the defects resulted from the loss of FAK and not from organ failure. Time-lapse microscopy monitoring EC behavior during vascular formation in explants revealed no apparent decrease in proliferation or migration but revealed increases in cell retraction and death leading to reduced vessel growth and increased vessel regression. Consistent with this phenotype, ECs derived from mutant embryos exhibited aberrant lamellipodial extensions, altered actin cytoskeleton, and nonpolarized cell movement. This study reveals that FAK is crucial for vascular morphogenesis and the regulation of EC survival and morphology

    Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin α8β1 in the embryonic kidney

    Get PDF
    The epithelial–mesenchymal interactions required for kidney organogenesis are disrupted in mice lacking the integrin α8β1. None of this integrin's known ligands, however, appears to account for this phenotype. To identify a more relevant ligand, a soluble integrin α8β1 heterodimer fused to alkaline phosphatase (AP) has been used to probe blots and cDNA libraries. In newborn mouse kidney extracts, α8β1-AP detects a novel ligand of 70–90 kD. This protein, named nephronectin, is an extracellular matrix protein with five EGF-like repeats, a mucin region containing a RGD sequence, and a COOH-terminal MAM domain. Integrin α8β1 and several additional RGD-binding integrins bind nephronectin. Nephronectin mRNA is expressed in the ureteric bud epithelium, whereas α8β1 is expressed in the metanephric mesenchyme. Nephronectin is localized in the extracellular matrix in the same distribution as the ligand detected by α8β1-AP and forms a complex with α8β1 in vivo. Thus, these results strongly suggest that nephronectin is a relevant ligand mediating α8β1 function in the kidney. Nephronectin is expressed at numerous sites outside the kidney, so it may also have wider roles in development. The approaches used here should be generally useful for characterizing the interactions of novel extracellular matrix proteins identified through genomic sequencing projects

    Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs

    Full text link
    Sensory ganglia that innervate taste buds and gustatory papillae (geniculate and petrosal) are reduced in volume by about 40% in mice with a targeted deletion of the gene for brain-derived neurotrophic factor (BDNF). In contrast, the trigeminal ganglion, which innervates papillae but not taste buds on the anterior tongue, is reduced by only about 18%. These specific alterations in ganglia that innervate taste organs make possible a test for roles of lingual innervation in the development of appropriate number, morphology, and spatial pattern of fungiform and circumvallate papillae and associated taste buds. We studied tongues of BDNF null mutant and wild-type littermates and made quantitative analyses of all fungiform papillae on the anterior tongue, the single circumvallate papilla on the posterior tongue, and all taste buds in both papilla types. Fungiform papillae and taste buds were reduced in number by about 60% and were substantially smaller in diameter in mutant mice 15–25 days postnatal. Remaining fungiform papillae were selectively concentrated in the tongue tip region. The circumvallate papilla was reduced in diameter and length by about 40%, and papilla morphology was disrupted. Taste bud number in the circumvallate was reduced by about 70% in mutant tongues, and the remaining taste buds were smaller than those on wild-type tongues. Our results demonstrate a selective dependence of taste organs on a full complement of appropriate innervation for normal growth and morphogenesis. Effects on papillae are not random but are more pronounced in specific lingual regions. Although the geniculate and petrosal ganglia sustain at least half of their normal complement of cell number in BDNF −/− mice, remaining ganglion cells do not substitute for lost neurons to rescue taste organs at control numbers. Whereas gustatory ganglia and the taste papillae initially form independently, our results suggest interdependence in later development because ganglia derive BDNF support from target organs and papillae require sensory innervation for morphogenesis. J. Comp. Neurol. 409:13–24, 1999.  © 1999 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34453/1/2_ftp.pd

    Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics

    Get PDF
    In response to αβ1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require αβ1 integrins. FAK is also dispensible for proliferation/survival in enriched medium. In contrast, FAK functions downstream of αβ1 integrin in regulating cytoskeletal dynamics and orchestrating polarized keratinocyte migration out of epidermal explants. Fak-null keratinocytes display an aberrant actin cytoskeleton, which is tightly associated with robust, peripheral focal adhesions and microtubules. We find that without FAK, Src, p190RhoGAP, and PKL–PIX–PAK, localization and/or activation at focal adhesions are impaired, leading to elevated Rho activity, phosphorylation of myosin light chain kinase, and enhanced tensile stress fibers. We show that, together, these FAK-dependent activities are critical to control the turnover of focal adhesions, which is perturbed in the absence of FAK

    Depolarization and cAMP Elevation Rapidly Recruit TrkB to the Plasma Membrane of CNS Neurons

    Get PDF
    AbstractHere, we describe a novel mechanism for the rapid regulation of surface levels of the neurotrophin receptor TrkB. Unlike nodose ganglion neurons, both retinal ganglion cells (RGCs) and spinal motor neurons (SMNs) in culture display only low levels of surface TrkB, though high levels are present intracellularly. Within minutes of depolarization or cAMP elevation, surface TrkB levels increase by nearly 4-fold, and this increase is not blocked by cycloheximide. These findings suggest that activity and cAMP elevation rapidly recruit TrkB to the plasma membrane by translocation from intracellular stores. We propose that a fundamental difference between peripheral nervous system (PNS) and central nervous system (CNS) neurons is the activity dependence of CNS neurons for responsiveness to their peptide trophic factors and that differences in membrane compartmentalization of the receptors underlie this difference

    Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival

    Get PDF
    The Pit1-Oct1-Unc86 domain (POU domain) transcription factor Brn3a controls sensory neuron survival by regulating the expression of Trk receptors and members of the Bcl-2 family. Loss of Brn3a leads to a dramatic increase in apoptosis and severe loss of neurons in sensory ganglia. Although recent evidence suggests that Brn3a-mediated transcription can be modified by additional cofactors, the exact mechanisms are not known. Here, we report that homeodomain interacting protein kinase 2 (HIPK2) is a pro-apoptotic transcriptional cofactor that suppresses Brn3a-mediated gene expression. HIPK2 interacts with Brn3a, promotes Brn3a binding to DNA, but suppresses Brn3a-dependent transcription of brn3a, trkA, and bcl-xL. Overexpression of HIPK2 induces apoptosis in cultured sensory neurons. Conversely, targeted deletion of HIPK2 leads to increased expression of Brn3a, TrkA, and Bcl-xL, reduced apoptosis and increases in neuron numbers in the trigeminal ganglion. Together, these data indicate that HIPK2, through regulation of Brn3a-dependent gene expression, is a critical component in the transcriptional machinery that controls sensory neuron survival
    corecore