15,704 research outputs found
Exciton resonances quench the photoluminescence of zigzag carbon nanotubes
We show that the photoluminescence intensity of single-walled carbon
nanotubes is much stronger in tubes with large chiral angles - armchair tubes -
because exciton resonances make the luminescence of zigzag tubes intrinsically
weak. This exciton-exciton resonance depends on the electronic structure of the
tubes and is found more often in nanotubes of the +1 family. Armchair tubes do
not necessarily grow preferentially with present growth techniques; they just
have stronger luminescence. Our analysis allows to normalize photoluminescence
intensities and find the abundance of nanotube chiralities in macroscopic
samples.Comment: 4 pages and 2 supplementary pages; 6 figure
Chirality distribution and transition energies of carbon nanotubes
From resonant Raman scattering on isolated nanotubes we obtained the optical
transition energies, the radial breathing mode frequency and Raman intensity of
both metallic and semiconducting tubes. We unambiguously assigned the chiral
index (n_1,n_2) of approximately 50 nanotubes based solely on a third-neighbor
tight-binding Kataura plot and find omega_RBM=214.4cm^-1nm/d+18.7cm^-1. In
contrast to luminescence experiments we observe all chiralities including
zig-zag tubes. The Raman intensities have a systematic chiral-angle dependence
confirming recent ab-initio calculations.Comment: 4 pages, to be published in Phys. Rev. Let
Modeling Surface-Enhanced Spectroscopy With Perturbation Theory
Theoretical modeling of surface-enhanced Raman scattering (SERS) is of central importance for unraveling the interplay of underlying processes and a predictive design of SERS substrates. In this work we model the plasmonic enhancement mechanism of SERS with perturbation theory. We consider the excitation of plasmonic modes as an integral part of the Raman process and model SERS as higher-order Raman scattering. Additional resonances appear in the Raman cross section which correspond to the excitation of plasmons at the wavelengths of the incident and the Raman-scattered light. The analytic expression for the Raman cross section can be used to explain the outcome of resonance Raman measurements on SERS analytes as we demonstrate by comparison to experimental data. We also implement the theory to calculate the optical absorption cross section of plasmonic nanoparticles. From a comparison to experimental cross sections, we show that the coupling matrix elements need to be renormalized by a factor that accounts for the depolarization by the bound electrons and interband transitions in order to obtain the correct magnitude. With model calculations we demonstrate that interference of different scattering channels is key to understand the excitation energy dependence of the SERS enhancement for enhancement factors below 103
Structure and formation energy of carbon nanotube caps
We present a detailed study of the geometry, structure and energetics of
carbon nanotube caps. We show that the structure of a cap uniquely determines
the chirality of the nanotube that can be attached to it. The structure of the
cap is specified in a geometrical way by defining the position of six pentagons
on a hexagonal lattice. Moving one (or more) pentagons systematically creates
caps for other nanotube chiralities. For the example of the (10,0) tube we
study the formation energy of different nanotube caps using ab-initio
calculations. The caps with isolated pentagons have an average formation energy
0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger
formation energy of 1.5eV. We show that the formation energy of adjacent
pentagon pairs explains the diameter distribution in small-diameter nanotube
samples grown by chemical vapor deposition.Comment: 8 pages, 8 figures (gray scale only due to space); submitted to Phys.
Rev.
Symmetry properties of vibrational modes in graphene nanoribbons
We present symmetry properties of the lattice vibrations of graphene
nanoribbons with pure armchair (AGNR) and zigzag edges (ZGNR). In
non-symmorphic nanoribbons the phonon modes at the edge of the Brillouin zone
are twofold degenerate, whereas the phonon modes in symmorphic nanoribbons are
non-degenerate. We identified the Raman-active and infrared-active modes. We
predict 3N and 3(N+1) Raman-active modes for N-ZGNRs and N-AGNRs, respectively
(N is the number of dimers per unit cell). These modes can be used for the
experimental characterization of graphene nanoribbons. Calculations based on
density functional theory suggest that the frequency splitting of the LO and TO
in AGNRs (corresponding to the E2g mode in graphene) exhibits characteristic
width and family dependence. Further, all graphene nanoribbons have a
Raman-active breathing-like mode, the frequency of which is inversely
proportional to the nanoribbon width and thus might be used for experimental
determination of the width of graphene nanoribbons.Comment: 10 pages, 5 figure
Exciton binding energies in carbon nanotubes from two-photon photoluminescence
One- and two-photon luminescence excitation spectroscopy showed a series of
distinct excitonic states in single-walled carbon nanotubes. The energy
splitting between one- and two-photon-active exciton states of different
wavefunction symmetry is the fingerprint of excitonic interactions in carbon
nanotubes. We determine exciton binding energies of 0.3-0.4 eV for different
nanotubes with diameters between 0.7 and 0.9 nm. Our results, which are
supported by ab-initio calculations of the linear and non-linear optical
spectra, prove that the elementary optical excitations of carbon nanotubes are
strongly Coulomb-correlated, quasi-one dimensionally confined electron-hole
pairs, stable even at room temperature. This alters our microscopic
understanding of both the electronic structure and the Coulomb interactions in
carbon nanotubes, and has direct impact on the optical and transport properties
of novel nanotube devices.Comment: 5 pages, 4 figure
- …