15,704 research outputs found

    Exciton resonances quench the photoluminescence of zigzag carbon nanotubes

    Full text link
    We show that the photoluminescence intensity of single-walled carbon nanotubes is much stronger in tubes with large chiral angles - armchair tubes - because exciton resonances make the luminescence of zigzag tubes intrinsically weak. This exciton-exciton resonance depends on the electronic structure of the tubes and is found more often in nanotubes of the +1 family. Armchair tubes do not necessarily grow preferentially with present growth techniques; they just have stronger luminescence. Our analysis allows to normalize photoluminescence intensities and find the abundance of nanotube chiralities in macroscopic samples.Comment: 4 pages and 2 supplementary pages; 6 figure

    Chirality distribution and transition energies of carbon nanotubes

    Full text link
    From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency and Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n_1,n_2) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega_RBM=214.4cm^-1nm/d+18.7cm^-1. In contrast to luminescence experiments we observe all chiralities including zig-zag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab-initio calculations.Comment: 4 pages, to be published in Phys. Rev. Let

    Modeling Surface-Enhanced Spectroscopy With Perturbation Theory

    Get PDF
    Theoretical modeling of surface-enhanced Raman scattering (SERS) is of central importance for unraveling the interplay of underlying processes and a predictive design of SERS substrates. In this work we model the plasmonic enhancement mechanism of SERS with perturbation theory. We consider the excitation of plasmonic modes as an integral part of the Raman process and model SERS as higher-order Raman scattering. Additional resonances appear in the Raman cross section which correspond to the excitation of plasmons at the wavelengths of the incident and the Raman-scattered light. The analytic expression for the Raman cross section can be used to explain the outcome of resonance Raman measurements on SERS analytes as we demonstrate by comparison to experimental data. We also implement the theory to calculate the optical absorption cross section of plasmonic nanoparticles. From a comparison to experimental cross sections, we show that the coupling matrix elements need to be renormalized by a factor that accounts for the depolarization by the bound electrons and interband transitions in order to obtain the correct magnitude. With model calculations we demonstrate that interference of different scattering channels is key to understand the excitation energy dependence of the SERS enhancement for enhancement factors below 103

    Structure and formation energy of carbon nanotube caps

    Full text link
    We present a detailed study of the geometry, structure and energetics of carbon nanotube caps. We show that the structure of a cap uniquely determines the chirality of the nanotube that can be attached to it. The structure of the cap is specified in a geometrical way by defining the position of six pentagons on a hexagonal lattice. Moving one (or more) pentagons systematically creates caps for other nanotube chiralities. For the example of the (10,0) tube we study the formation energy of different nanotube caps using ab-initio calculations. The caps with isolated pentagons have an average formation energy 0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger formation energy of 1.5eV. We show that the formation energy of adjacent pentagon pairs explains the diameter distribution in small-diameter nanotube samples grown by chemical vapor deposition.Comment: 8 pages, 8 figures (gray scale only due to space); submitted to Phys. Rev.

    Symmetry properties of vibrational modes in graphene nanoribbons

    Full text link
    We present symmetry properties of the lattice vibrations of graphene nanoribbons with pure armchair (AGNR) and zigzag edges (ZGNR). In non-symmorphic nanoribbons the phonon modes at the edge of the Brillouin zone are twofold degenerate, whereas the phonon modes in symmorphic nanoribbons are non-degenerate. We identified the Raman-active and infrared-active modes. We predict 3N and 3(N+1) Raman-active modes for N-ZGNRs and N-AGNRs, respectively (N is the number of dimers per unit cell). These modes can be used for the experimental characterization of graphene nanoribbons. Calculations based on density functional theory suggest that the frequency splitting of the LO and TO in AGNRs (corresponding to the E2g mode in graphene) exhibits characteristic width and family dependence. Further, all graphene nanoribbons have a Raman-active breathing-like mode, the frequency of which is inversely proportional to the nanoribbon width and thus might be used for experimental determination of the width of graphene nanoribbons.Comment: 10 pages, 5 figure

    Exciton binding energies in carbon nanotubes from two-photon photoluminescence

    Full text link
    One- and two-photon luminescence excitation spectroscopy showed a series of distinct excitonic states in single-walled carbon nanotubes. The energy splitting between one- and two-photon-active exciton states of different wavefunction symmetry is the fingerprint of excitonic interactions in carbon nanotubes. We determine exciton binding energies of 0.3-0.4 eV for different nanotubes with diameters between 0.7 and 0.9 nm. Our results, which are supported by ab-initio calculations of the linear and non-linear optical spectra, prove that the elementary optical excitations of carbon nanotubes are strongly Coulomb-correlated, quasi-one dimensionally confined electron-hole pairs, stable even at room temperature. This alters our microscopic understanding of both the electronic structure and the Coulomb interactions in carbon nanotubes, and has direct impact on the optical and transport properties of novel nanotube devices.Comment: 5 pages, 4 figure
    • …
    corecore