4 research outputs found

    Process Development for Batch Production of Micro-Milling Tools Made of Silicon Carbide by Means of the Dry Etching Process

    Get PDF
    Downsized and complex micro-machining structures have to meet quality requirements concerning geometry and convince through increasing functionality. The development and use of cutting tools in the sub-millimeter range can meet these demands and contribute to the production of intelligent components in biomedical technology, optics or electronics. This article addresses the development of double-edged micro-cutters, which consist of a two-part system of cutter head and shaft. The cutting diameters are between 50 and 200 Όm. The silicon carbide cutting heads are manufactured from the solid material using microsystem technology. The substrate used can be structured uniformly via photolithography, which means that 5200 homogeneous micro-milling heads can be produced simultaneously. This novel batch approach represents a contrast to conventionally manufactured micro-milling cutters. The imprint is taken by means of reactive ion etching using a mask made of electroplated nickel. Within this dry etching process, characteristic values such as the etch rate and flank angle of the structures are critical and will be compared in a parameter analysis. At optimal parameters, an anisotropy factor of 0.8 and an etching rate of 0.34 ”m/min of the silicon carbide are generated. Finally, the milling heads are diced and joined. In the final machining tests, the functionality is investigated and any signs of wear are evaluated. A tool life of 1500 mm in various materials could be achieved. This and the milling quality achieved are in the range of conventional micro-milling cutters, which gives a positive outlook for further development

    Analysis of Inflammation-Related Genes in Patients with Stanford Type A Aortic Dissection

    No full text
    Background: Aortic dissection (AD) is a life-threatening cardiovascular disease. Pathophysiologically, it has been shown that aortic wall inflammation promotes the occurrence and development of aortic dissection. Thus, the aim of the current research was to determine the inflammation-related biomarkers in AD. Methods: In this study, we conducted differentially expressed genes (DEGs) analysis using the GSE153434 dataset containing 10 type A aortic dissection (TAAD) and 10 normal samples downloaded from the Gene Expression Omnibus (GEO) database. The intersection of DEGs and inflammation-related genes was identified as differential expressed inflammation-related genes (DEIRGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for DEIRGs. We then constructed the protein–protein interaction (PPI) network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and identified hub genes using the Cytoscape plugin MCODE. Finally, least absolute shrinkage and selection operator (LASSO) logistic regression was used to construct a diagnostic model. Results: A total of 1728 DEGs were identified between the TAAD and normal samples. Thereafter, 61 DEIRGs are obtained by taking the intersection of DEGs and inflammation-related genes. The GO indicated that DEIRGs were mainly enriched in response to lipopolysaccharide, in response to molecules of bacterial origin, secretory granule membrane, external side of plasma, receptor ligand activity, and signaling receptor activator activity. KEGG analysis indicated that DEIRGs were mainly enriched in cytokine–cytokine receptor interaction, TNF signaling pathway, and proteoglycans in cancer. We identified MYC, SELL, HIF1A, EDN1, SERPINE1, CCL20, IL1R1, NOD2, TLR2, CD69, PLAUR, MMP14, and HBEGF as hub genes using the MCODE plug-in. The ROC indicated these genes had a good diagnostic performance for TAAD. Conclusion: In conclusion, our study identified 13 hub genes in the TAAD. This study will be of significance for the future development of a preventive therapy of TAAD

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore