409 research outputs found

    Single-crystal growth of the ternary BaFe2_2As2_2 phase using the vertical Bridgman technique

    Full text link
    Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe2_2As2_2 phase. We found that the BaFe2_2As2_2 phase most likely melts congruently and primarily solidifies either in the FeAs excess or Bax_{x}As100x_{100-x} excess liquid. Knowing the primary solidification field, we have performed the vertical Bridgman growth using the starting liquid composition of Ba15_{15}Fe42.5_{42.5}As42.5_{42.5}. Large single crystals of the typical size 10x4x2 mm3^3 were obtained and their quality was confirmed by X-ray Laue and neutron diffraction.Comment: Submitted to Jpn. J. Appl. Phys.; revise

    AdvantageNAS: Efficient Neural Architecture Search with Credit Assignment

    Full text link
    Neural architecture search (NAS) is an approach for automatically designing a neural network architecture without human effort or expert knowledge. However, the high computational cost of NAS limits its use in commercial applications. Two recent NAS paradigms, namely one-shot and sparse propagation, which reduce the time and space complexities, respectively, provide clues for solving this problem. In this paper, we propose a novel search strategy for one-shot and sparse propagation NAS, namely AdvantageNAS, which further reduces the time complexity of NAS by reducing the number of search iterations. AdvantageNAS is a gradient-based approach that improves the search efficiency by introducing credit assignment in gradient estimation for architecture updates. Experiments on the NAS-Bench-201 and PTB dataset show that AdvantageNAS discovers an architecture with higher performance under a limited time budget compared to existing sparse propagation NAS. To further reveal the reliabilities of AdvantageNAS, we investigate it theoretically and find that it monotonically improves the expected loss and thus converges.Comment: preprint to be published in AAAI-2

    Neutron scattering study on spin correlations and fluctuations in the transition-metal-based magnetic quasicrystal Zn-Fe-Sc

    Full text link
    Spin correlations and fluctuations in the 3d-transition-metal-based icosahedral quasicrystal Zn-Fe-Sc have been investigated by neutron scattering using polycrystalline samples. Magnetic diffuse scattering has been observed in the elastic experiment at low temperatures, indicating development of static short-range-spin correlations. In addition, the inelastic scattering experiment detects a QQ-independent quasielastic signal ascribed to single-site relaxational spin fluctuations. Above the macroscopic freezing temperature Tf7T_{\rm f} \simeq 7 K, the spin relaxation rate shows Arrhenius-type behavior, indicating thermally activated relaxation process. In contrast, the relaxation rate remains finite even at the lowest temperature, suggesting a certain quantum origin for the spin fluctuations below TfT_{\rm f}.Comment: To be published in Phys. Rev.

    Max-Min Off-Policy Actor-Critic Method Focusing on Worst-Case Robustness to Model Misspecification

    Full text link
    In the field of reinforcement learning, because of the high cost and risk of policy training in the real world, policies are trained in a simulation environment and transferred to the corresponding real-world environment. However, the simulation environment does not perfectly mimic the real-world environment, lead to model misspecification. Multiple studies report significant deterioration of policy performance in a real-world environment. In this study, we focus on scenarios involving a simulation environment with uncertainty parameters and the set of their possible values, called the uncertainty parameter set. The aim is to optimize the worst-case performance on the uncertainty parameter set to guarantee the performance in the corresponding real-world environment. To obtain a policy for the optimization, we propose an off-policy actor-critic approach called the Max-Min Twin Delayed Deep Deterministic Policy Gradient algorithm (M2TD3), which solves a max-min optimization problem using a simultaneous gradient ascent descent approach. Experiments in multi-joint dynamics with contact (MuJoCo) environments show that the proposed method exhibited a worst-case performance superior to several baseline approaches.Comment: Neural Information Processing Systems 2022 (NeurIPS '22

    Preventing Incorrect Opinion Sharing with Weighted Relationship Among Agents

    Get PDF

    Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni bimetallic catalysts

    Get PDF
    Vapor-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was performed over SiO2-supported Cu-Ni bimetallic catalysts with different Cu/Ni weight ratios under ambient H2 pressure. Characterization of the catalysts was carried out using powder X-ray diffraction, temperature programmed reduction and thermogravimetric analysis. In contrast to the monometallic catalysts i.e. Ni/SiO2 and Cu/SiO2, the Cu-Ni/SiO2 bimetallic catalyst with a Cu/Ni weight ratio of 6/14 exhibits an excellent catalytic activity, and gave a GVL yield higher than 99% with a productivity of 1.64 kgGVL kgcat.− 1 h− 1 at 250 °C and at a high WHSV of 1.65 h− 1 for 50 h

    Fermi surface topology and electronic transport properties of a chiral crystal NbGe2_2 with strong electron-phonon interaction

    Full text link
    We report the electronic structures and transport properties of a chiral crystal NbGe2_2, which is a candidate for a coupled electron-phonon liquid. The electrical resistivity and thermoelectric power of NbGe2_2 exhibit clear differences compared to those of NbSi2 even though both niobium ditetrelides are isostructural and isoelectronic. We discuss the intriguing transport properties of NbGe2_2 based on a van Hove-type singularity in the density of states. The analysis of de Haas-van Alphen oscillations measured by the field modulation and magnetic torque methods reveals the detailed shape of the Fermi surface of NbGe2_2 by comparison with the results of energy band structure calculations using a local density approximation. The electron and hole Fermi surfaces of NbGe2_2 split into two because of the anti-symmetric spin-orbit interaction. The temperature dependence of quantum oscillations indicates that the effective mass is isotropically enhanced in NbGe2_2 due to strong electron-phonon interaction.Comment: 9 pages, 7 figures, To be published in Phys. Rev.

    Stand-to-sit motion in older women

    Get PDF
    Objectives : The aims of this study were to examine the biomechanics of StandTS movements in older adults and to identify their optimal StandTS motion by measuring sitting impact forces. Methods : Healthy older women (n = 17) and healthy young women (n = 18) were asked to perform SitTS and StandTS motions at a natural speed using a chair. We measured the ground reaction forces from the participants’ feet and the chair, the angle of the trunk and ankle, vertical velocity, and postural muscle activities using a force plate, motion analyzer, and electromyography, respectively. Results : Sitting impact force was significantly greater in the older women than in the young women during the StandTS motion. There was a significant difference between the trunk angle and the ankle angle during the StandTS motion and sitting impact force had a significant negative correlation with the ankle joint motion in the older women. Conclusions : The ankle joint strategy was characterized by body sway resembling a single-segment-inverted pendulum and suggests that this response is less developed in the older adult. These results indicate that the ankle joint strategy may be an important factor involved in the sitting impact force

    Neutron scattering study of magnetic ordering and excitations in the ternary rare-earth diborocarbide Ce^{11}B_2C_2

    Full text link
    Neutron scattering experiments have been performed on the ternary rare-earth diborocarbide Ce11^{11}B2_2C2_2. The powder diffraction experiment confirms formation of a long-range magnetic order at TN=7.3T_{\rm N} = 7.3 K, where a sinusoidally modulated structure is realized with the modulation vector q=[0.167(3),0.167(3),0.114(3)]{\bm q} = [0.167(3), 0.167(3), 0.114(3)]. Inelastic excitation spectra in the paramagnetic phase comprise significantly broad quasielastic and inelastic peaks centered at ω0,8\hbar \omega \approx 0, 8 and 65 meV. Crystalline-electric-field (CEF) analysis satisfactorily reproduces the observed spectra, confirming their CEF origin. The broadness of the quasielastic peak indicates strong spin fluctuations due to coupling between localized 4f4f spins and conduction electrons in the paramagnetic phase. A prominent feature is suppression of the quasielastic fluctuations, and concomitant growth of a sharp inelastic peak in a low energy region below TNT_{\rm N}. This suggests dissociation of the conduction and localized 4f4f electrons on ordering, and contrasts the presently observed incommensurate phase with spin-density-wave order frequently seen in heavy fermion compounds, such as Ce(Ru1x_{1-x}Lax_x)2_2Si2_2.Comment: accepted for publication in Phys. Rev.
    corecore