Social media is often viewed as a sensor into various societal events such as
disease outbreaks, protests, and elections. We describe the use of social media
as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our
approach detects a broad range of cyber-attacks (e.g., distributed denial of
service (DDOS) attacks, data breaches, and account hijacking) in an
unsupervised manner using just a limited fixed set of seed event triggers. A
new query expansion strategy based on convolutional kernels and dependency
parses helps model reporting structure and aids in identifying key event
characteristics. Through a large-scale analysis over Twitter, we demonstrate
that our approach consistently identifies and encodes events, outperforming
existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201