276 research outputs found
Metabolic acidosis may be as protective as hypercapnic acidosis in an ex-vivo model of severe ventilator-induced lung injury: a pilot study
<p>Abstract</p> <p>Background</p> <p>There is mounting experimental evidence that hypercapnic acidosis protects against lung injury. However, it is unclear if acidosis <it>per se </it>rather than hypercapnia is responsible for this beneficial effect. Therefore, we sought to evaluate the effects of hypercapnic (respiratory) versus normocapnic (metabolic) acidosis in an ex vivo model of ventilator-induced lung injury (VILI).</p> <p>Methods</p> <p>Sixty New Zealand white rabbit ventilated and perfused heart-lung preparations were used. Six study groups were evaluated. Respiratory acidosis (RA), metabolic acidosis (MA) and normocapnic-normoxic (Control - C) groups were randomized into high and low peak inspiratory pressures, respectively. Each preparation was ventilated for 1 hour according to a standardized ventilation protocol. Lung injury was evaluated by means of pulmonary edema formation (weight gain), changes in ultrafiltration coefficient, mean pulmonary artery pressure changes as well as histological alterations.</p> <p>Results</p> <p>HPC group gained significantly greater weight than HPMA, HPRA and all three LP groups (P = 0.024), while no difference was observed between HPMA and HPRA groups regarding weight gain. Neither group differ on ultrafiltration coefficient. HPMA group experienced greater increase in the mean pulmonary artery pressure at 20 min (P = 0.0276) and 40 min (P = 0.0012) compared with all other groups. Histology scores were significantly greater in HP vs. LP groups (p < 0.001).</p> <p>Conclusions</p> <p>In our experimental VILI model both metabolic acidosis and hypercapnic acidosis attenuated VILI-induced pulmonary edema implying a mechanism other than possible synergistic effects of acidosis with CO2 for VILI attenuation.</p
The effects of high frequency subthalamic stimulation on balance performance and fear of falling in patients with Parkinson's disease
<p>Abstract</p> <p>Background</p> <p>Balance impairment is one of the most distressing symptoms in Parkinson's disease (PD) even with pharmacological treatment (levodopa). A complementary treatment is high frequency stimulation in the subthalamic nucleus (STN). Whether STN stimulation improves postural control is under debate. The aim of this study was to explore the effects of STN stimulation alone on balance performance as assessed with clinical performance tests, subjective ratings of fear of falling and posturography.</p> <p>Methods</p> <p>Ten patients (median age 66, range 59–69 years) with bilateral STN stimulation for a minimum of one year, had their anti-PD medications withdrawn overnight. Assessments were done both with the STN stimulation turned OFF and ON (start randomized). In both test conditions, the following were assessed: motor symptoms (descriptive purposes), clinical performance tests, fear of falling ratings, and posturography with and without vibratory proprioceptive disturbance.</p> <p>Results</p> <p>STN stimulation alone significantly (p = 0.002) increased the scores of the Berg balance scale, and the median increase was 6 points. The results of all timed performance tests, except for sharpened Romberg, were significantly (p ≤ 0.016) improved. The patients rated their fear of falling as less severe, and the total score of the Falls-Efficacy Scale(S) increased (p = 0.002) in median with 54 points. All patients completed posturography when the STN stimulation was turned ON, but three patients were unable to do so when it was turned OFF. The seven patients with complete data showed no statistical significant difference (p values ≥ 0.109) in torque variance values when comparing the two test situations. This applied both during quiet stance and during the periods with vibratory stimulation, and it was irrespective of visual input and sway direction.</p> <p>Conclusion</p> <p>In this sample, STN stimulation alone significantly improved the results of the clinical performance tests that mimic activities in daily living. This improvement was further supported by the patients' ratings of fear of falling, which were less severe with the STN stimulation turned ON. Posturography could not be performed by three out of the ten patients when the stimulation was turned OFF. The posturography results of the seven patients with complete data showed no significant differences due to STN stimulation.</p
Beneficial Effects of Estrogen in a Mouse Model of Cerebrovascular Insufficiency
BACKGROUND: The M(5) muscarinic acetylcholine receptor is known to play a crucial role in mediating acetylcholine dependent dilation of cerebral blood vessels. Previously, we reported that male M(5) muscarinic acetylcholine knockout mice (M5R(-/-) mice) suffer from a constitutive constriction of cerebral arteries, reduced cerebral blood flow, dendritic atrophy, and short-term memory loss, without necrosis and/or inflammation in the brain. METHODOLOGY/PRINCIPAL FINDINGS: We employed the Magnetic Resonance Angiography to study the area of the basilar artery in male and female M5R(-/-) mice. Here we show that female M5R(-/-) mice did not show the reduction in vascular area observed in male M5R(-/-) mice. However, ovariectomized female M5R(-/-) mice displayed phenotypic changes similar to male M5R(-/-) mice, strongly suggesting that estrogen plays a key role in the observed gender differences. We found that 17beta-estradiol (E2) induced nitric oxide release and ERK activation in a conditional immortalized mouse brain cerebrovascular endothelial cell line. Agonists of ERalpha, ERbeta, and GPR30 promoted ERK activation in this cell line. Moreover, in vivo magnetic resonance imaging studies showed that the cross section of the basilar artery was restored to normal in male M5R(-/-) mice treated with E2. Treatment with E2 also improved the performance of male M5R(-/-) mice in a cognitive test and reduced the atrophy of neural dendrites in the cerebral cortex and hippocampus. M5R(-/-) mice also showed astrocyte swelling in cortex and hippocampus using the three-dimensional reconstruction of electron microscope images. This phenotype was reversed by E2 treatment, similar to the observed deficits in dendrite morphology and the number of synapses. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that M5R(-/-) mice represent an excellent novel model system to study the beneficial effects of estrogen on cerebrovascular function and cognition. E2 may offer new therapeutic perspectives for the treatment of cerebrovascular insufficiency related memory dysfunction
In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain
© 2014 American Chemical Society. Rapid advances in imaging technologies have pushed novel spectroscopic modalities such as Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the forefront of direct in situ investigation of brain biochemistry. However, few studies have examined the extent to which sample preparation artifacts confound results. Previous investigations using traditional analyses, such as tissue dissection, homogenization, and biochemical assay, conducted extensive research to identify biochemical alterations that occur ex vivo during sample preparation. In particular, altered metabolism and oxidative stress may be caused by animal death. These processes were a concern for studies using biochemical assays, and protocols were developed to minimize their occurrence. In this investigation, a similar approach was taken to identify the biochemical alterations that are detectable by two in situ spectroscopic methods (FTIR, XAS) that occur as a consequence of ischemic conditions created during humane animal killing. FTIR and XAS are well suited to study markers of altered metabolism such as lactate and creatine (FTIR) and markers of oxidative stress such as aggregated proteins (FTIR) and altered thiol redox (XAS). The results are in accordance with previous investigations using biochemical assays and demonstrate that the time between animal death and tissue dissection results in ischemic conditions that alter brain metabolism and initiate oxidative stress. Therefore, future in situ biospectroscopic investigations utilizing FTIR and XAS must take into consideration that brain tissue dissected from a healthy animal does not truly reflect the in vivo condition, but rather reflects a state of mild ischemia. If studies require the levels of metabolites (lactate, creatine) and markers of oxidative stress (thiol redox) to be preserved as close as possible to the in vivo condition, then rapid freezing of brain tissue via decapitation into liquid nitrogen, followed by chiseling the brain out at dry ice temperatures is required
Transplantation and surgical treatment of parkinsonian syndromes
Neurosurgical attempts to correct parkinsonism use strategies aimed either at alleviating the underlying dopamine deficiency or at correcting abnormal compensatory effects in neural circuits within the basal ganglia. During the review period, clinical trials of four different neurosurgical approaches were reported. These approaches are intracerebral transplantation of fetal dopamine neurons, intracerebral transplantation of adrenal medullary tissue, tremor-reducing surgical lesions in the ventrolateral thalamus, and ventroposterior pallidotomy aimed at reducing akinesia and rigidity. Experimental studies in rats and monkeys designed to explore mechanisms of graft actions were also reported
- …