9 research outputs found

    Selection of potent bacterial strain for over-production of PHB by using low cost carbon source for eco-friendly bioplastics

    Get PDF
    Background: The microbial PHB production is a promising tool for the plastic industry for the synthesis of environmental friendly, biodegradable plastic in contrast to the conventional petro-chemical based non-degradable plastics. The selection of potent bacterial strains, inexpensive carbon source, efficient fermentation and recovery processes are important aspects that were taken into account during this study.Methods: Different bacterial strains i.e. Bacillus Spp, P. putida and P. fluorescens were screened for maximum PHB production. Under media optimization, various carbon and nitrogen sources (alone or in combination) were used to achieve the maximum PHB production. Finally the degradation tests of the PHB sheet were also performed to test its biodegradability potential.Results: Shake flask studies have shown the PHB concentrations upto 7.02, 4.50 and 34.4 mg/g of dry cell mass of P. putida, P. fluorescens and Bacillus Spp. respectively. Almost same results were observed at laboratory scale production of PHB in 10 L fermenter i.e. 6.28, 6.23 and 39.5 mg/g of dry cell mass by P. putida, P. fluorescens and Bacillus Spp. respectively. On the basis of these observations, Bacillus Spp. was chosen for laboratory scale PHB production. Corn steep liquor (4%) was chosen as the best medium to achieve the highest PHB contents. Isolated PHB has shown biodegradation in soil up to 86.7% at 37oC.Conclusion: The Bacillus Spp. Proved to be the best strain for PHB production on only 4% CSL which is cheapest and easily available

    Selection of potent bacterial strain for over-production of PHB by using low cost carbon source for eco-friendly bioplastics

    No full text
    Background: The microbial PHB production is a promising tool for the plastic industry for the synthesis of environmental friendly, biodegradable plastic in contrast to the conventional petro-chemical based non-degradable plastics. The selection of potent bacterial strains, inexpensive carbon source, efficient fermentation and recovery processes are important aspects that were taken into account during this study. Methods: Different bacterial strains i.e. Bacillus Spp, P. putida and P. fluorescens were screened for maximum PHB production. Under media optimization, various carbon and nitrogen sources (alone or in combination) were used to achieve the maximum PHB production. Finally the degradation tests of the PHB sheet were also performed to test its biodegradability potential. Results: Shake flask studies have shown the PHB concentrations upto 7.02, 4.50 and 34.4 mg/g of dry cell mass of P. putida, P. fluorescens and Bacillus Spp. respectively. Almost same results were observed at laboratory scale production of PHB in 10 L fermenter i.e. 6.28, 6.23 and 39.5 mg/g of dry cell mass by P. putida, P. fluorescens and Bacillus Spp. respectively. On the basis of these observations, Bacillus Spp. was chosen for laboratory scale PHB production. Corn steep liquor (4%) was chosen as the best medium to achieve the highest PHB contents. Isolated PHB has shown biodegradation in soil up to 86.7% at 37oC. Conclusion: The Bacillus Spp. Proved to be the best strain for PHB production on only 4% CSL which is cheapest and easily available

    Role of commercially available SARS-CoV-2 detection kits in pandemic of COVID-19 on the basis of N and E gene detection

    Get PDF
    Coronavirus has blowout worldwide from the time when its revelation in Hubei Province, China in December 2019 introducing a genuine general wellbeing emergency. The capacity to recognize an irresistible specialist in a broad pestilence is vital to the achievement of isolate endeavors notwithstanding the delicate and precise screening of expected instances of disease from patients in a clinical setting. Structural proteins the basic key role-playing in SARS-CoV2 identification include a spike, envelope membrane, nucleocapsid, and helper proteins. N-protein ties to the infection single positive-strand RNA that permits the infection to assume control over human cells and transform them into infection industrial facilities inside the capsid and E-protein shows a significant part in infection gathering, film permeability of the host cell, and infection has cell correspondence. Nucleic-Acid base testing presently offers the most touchy and early discovery of COVID-19. Notwithstanding, analytic advancements have explicit impediments and announced a few false negative and false positive cases, particularly during the beginning phases of contamination. Presently, more refined diagnostics are being created to improve the COVID-19 determination. This article presents an outline of diagnostic approaches to address a few inquiries and issues identified with the constraints of flow innovations and future innovative work difficulties to empower ideal, fast, minimal effort, and precise analysis of arising irresistible illnesses We depict purpose of-care diagnostics that are not too far off and urge scholastics to propel their advancements past origination. Creating fitting and-play diagnostics to deal with the SARS-CoV-2 flare-up would be valuable in forestalling forthcoming pandemics.Keywords: Role of commercially available kits; SARS-CoV2; Pandemic of Covid-19; N gene; E gen

    Novel Coronavirus (2019-NCOV) Outbreak: A Mini Review

    No full text
    The SARS pandemic produces new avenues to discover and anticipate the variations made in SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) and how human angiotensin converting enzyme 2 receptor ideally becomes congenial with &ldquo;S&rdquo; region of this virus and in consequence ofits spread in human species all over the globe. At the end of 2019, the earliest wave of SARS-CoV-2 transmission was notified from Wuhan-Hubei China and thereafter spread globally. COVID-19 infection got widespread and upto now, 2,776,224 active cases, 334,058 deceased and 2,078,505-recovered cases have been reported. Morbidity and mortality rate vary in every region which pondered the researcher to look into the linkage between a different variant of the SARS-CoV-2 with disease severity along with other determining factors like climatic changes, diagnostic techniques, hospitals and laboratory quality control measures.</p

    Delineation of Drainage Network and Estimation of Total Discharge using Digital Elevation Model (DEM)

    No full text
    The rapid urbanization and the population growth, have increased the demands of fresh water to manage various tasks from domestic to industrial scales. Various man driven sectors such as agriculture, industry and water filtration plants, require fresh water to cater the need of increasing population. Therefore, the management of available fresh water reservoirs is of great importance to save water for a sustainable future “save water save life”. Digital elevation model (DEM) is efficient to extract the drainage network, basin boundaries and to evaluate the volume of fresh water available in study site. We used Arc hydro tools in Arc GIS interface for extraction of drainage network in the study site. Flow direction and accumulation were computed according to Z-value of individual pixel available in the raster grid. A total 127 streams were extracted against 127 catchments. We observed that the catchments bearing steep slopes were incised in comparison to gentle slopes which were mostly eroded. We evaluated the total discharge in cusec using Q=CIA, where the coefficient ‘C’ of rainfall was substituted as 0.76 for each catchment having rocky soil type. The total discharge was estimated as 10871 cusec. GIS tools proved efficient to map watershed in the study site. Full Tex

    Phytochemical screening, biological evaluation, and molecular docking studies of aerial parts of Trigonella hamosa (branched Fenugreek)

    No full text
    Trigonella hamosa (Genus: Trigonella; Family: Fabaceae), also known as branched Fenugreek, is a medicinally important plant traditionally employed for the treatment of common ailments. This study aimed at the evaluation of the chemical composition and biological profile of T. hamosa. The hydro-methanolic extract of T. hamosa (METH) was prepared through maceration, and subjected to solvent–solvent fractionation to obtain n-hexane fraction (HFTH), chloroform fraction (CFTH) and n-butanol fraction of T. hamosa (BFTH). Chemical profiling was carried out through preliminary phytochemical screening and determination of total phenolic (TFC) and total flavonoid contents (TFC) and GC–MS analysis. In biological profiling, the extract and fractions were analyzed for in vitro antioxidant, antidiabetic, antibacterial, antiviral and thrombolytic activities. The preliminary phytochemical screening revealed the presence of various primary and secondary metabolites in extract and fractions of T. hamosa, polyphenolic quantification of METH showed highest TPC (139.32 ± 2.07 mg GAE/g D.E.) and TFC (61.31 ± 3.12 mg QE/g D.E). Similarly, a total of 22 compounds were tentatively identified in the GC–MS analysis of HFTH. The highest antioxidant activity was observed for HFTH in the CUPRAC and DPPH assays followed by METH which presented maximum results in CUPRAC assay. In vitro antidiabetic assay of HFTH showed significant alpha-amylase inhibition potential (70.13%) followed by CFTH (53.42 %). In the anti-thrombolytic assay, maximum results were observed for HFTH (60.99 %) followed by METH (45.24 %). The comparative bioactive fraction was subjected to antibacterial assessment which presented a concentration-dependent increase in antibacterial activity against various strains; Escherichia coli with a zone of Inhibition (16 mm), Bacillus subtilis (15 mm), Staphylococcus aureus (15 mm), Bacillus pumilus (14 mm). Similarly, HFTH exhibited strong antiviral potential against all the tested viral strains; avian influenza A H9, avian infectious bronchitis virus IBV, and Newcastle disease virus NDV with strong hemagglutination titers 2, 0, and 2 respectively. Furthermore, the phytoconstituents identification by GC–MS was further analyzed by subjecting to in-silico molecular docking analysis for determination of interaction between identified phytoconstituents and α-amylase enzyme. This study highlighted the antioxidant, antimicrobial, and antidiabetic potential of aerial parts of Trigonella hamosa that could be further explored for the selection of leads which may contribute to novel drug development

    Mutation Rate Analysis of RM Y-STRs in Deep-Rooted Multi-Generational Punjabi Pedigrees from Pakistan

    No full text
    Y chromosome short tandem repeat polymorphisms (Y-STRs) are important in many areas of human genetics. Y chromosomal STRs, being normally utilized in the field of forensics, exhibit low haplotype diversity in consanguineous populations and fail to discriminate among male relatives from the same pedigree. Rapidly mutating Y-STRs (RM Y-STRs) have received much attention in the past decade. These 13 RM Y-STRs have high mutation rates (&gt;10&minus;2) and have considerably higher haplotype diversity and discrimination capacity than conventionally used Y-STRs, showing remarkable power when it comes to differentiation in paternal lineages in endogamous populations. Previously, we analyzed two to four generations of 99 pedigrees with 1568 pairs of men covering one to six meioses from all over Pakistan and 216 male relatives from 18 deep-rooted endogamous Sindhi pedigrees covering one to seven meioses. Here, we present 861 pairs of men from 62 endogamous pedigrees covering one to six meioses from the Punjabi population of Punjab, Pakistan. Mutations were frequently observed at DYF399 and DYF403, while no mutation was observed at DYS526a/b. The rate of differentiation ranged from 29.70% (first meiosis) to 80.95% (fifth meiosis), while overall (first to sixth meiosis) differentiation was 59.46%. Combining previously published data with newly generated data, the overall differentiation rate was 38.79% based on 5176 pairs of men related by 1&ndash;20 meioses, while Yfiler differentiation was 9.24% based on 3864 pairs. Using father&ndash;son pair data from the present and previous studies, we also provide updated RM Y-STR mutation rates
    corecore