16 research outputs found

    Personalized Medicine; a Potential Therapy for Cystic Fibrosis

    Get PDF
    Cystic Fibrosis (CF) is an inherited disorder caused by mutations in CFTR gene that codes for Cystic Fibrosis Transmembrane-conductance Receptor anion channel. It is an autosomal recessive disease which affects the cells that secrete sweat, mucous and digestive juice, making these fluids thick and sticky, thus plugging ducts and tubes of various organs. The CF mutations are classified into various classes (class I, II, III, IV, V and VI) based on the cellular phenotype and complexity of mutants. The knowledge and understanding of biology and mechanisms of defects that underlie Cystic fibrosis paved a way to the development of different therapeutic approaches for these mutation classes. Ivacaftor first CFTR potentiator (FDA approved in 2012) is mostly used for Class III and IV mutations. Trials in patients with homozygous F508del mutation, a most common type of CF mutation that involves protein processing defects, showed no improvement with Ivacaftor alone, therefore, a double-combination therapy involving potentiator-corrector i.e., Ivacaftor-Lumacaftor got approval in 2015 to treat patients homozygous for F508del mutation. Then Ivacaftor-Tezacaftor (corrector) combination therapy was approved in 2018 which showed improved tolerability as compared to lumacaftor. In 2019, Trikfta, a triple combination therapy, came into light. It increases CFTR activity and is substantially considered to work more effectively in patients homozygous for F508del mutation. Studies and clinical trials reveal the outperformance of Trikafta in other available therapies in terms of respiratory symptoms, lungs functionality and quality of life on a whole.Keywords: Cystic Fibrosis (CF); Cystic Fibrosis Transmembrane Conductance regulator (CFTR); Ivacaftor; Lumacaftor; Tezacaftor; Trikafta    

    Protein Engineering of Endoglucanase CelR of Clostridium thermocellum for Enhanced Expression

    Get PDF
    Background: Enhanced production and improved properties of cellulases for a greater activity on plant biomass would rank amongst the top priorities for second-generation ethanol production. Based on the emergence of protein engineering as a cutting-edge technology for enhancing enzyme activity and expression level, the present study is aimed at the application of this technique to the major cellulosomal processing endoglucanase of C. thermocellum, CelR for refining enzyme characteristics. Methods: The full-length native enzyme gene (CelR) and a truncated version without the docking domains at C-terminus (CelR-CB) were PCR amplified using gene specific primers. The amplified PCR products were T/A cloned in the vector pTZ57 R/T and transformed in E. coli DH5α. The cellulase genes from the confirmed transformed plasmids were sub-cloned in T7 promoter-based expression vector pET-28a and expression analysis was done in E. coli (DE3) BL21 codon Plus. Results: An SDS PAGE analysis of both the CelR derivatives revealed that the truncated version i.e. CelR-CB showed a two-fold increase in expression level as compared to the full-length enzyme. Conclusion: The increased expression level of CelR in E. coli coupled with its increased production therefore makes it a promising method for augmenting the recombinant enzyme production for potential applications.

    In silico design and evaluation of novel cell targeting melittin-interleukin-24 fusion protein: a potential drug candidate against breast cancer

    Get PDF
    Fusion proteins are designed to achieve new functionality or improved properties synergistically by incorporating multiple protein domains into one complex. The fusion of two genes to translate a recombinant protein for cancer treatment can enhance the bioactivity of drug and can introduce novel drug candidate with wide range of applications in pharmaceuticals and biotechnology. Interleukin-24 (IL-24) is a novel cancer growth-suppressing and apoptosis inducing cytokine while melittin is a natural honeybee derived cationic polypeptide having anti-tumor activity against breast cancer cells. The current study was aimed to perform in silico design and analyses of a melittin-IL-24 fusion protein against breast cancer. The amino acid sequences of the IL-24 and melittin peptide were used to design the fusion protein via a rigid linker. Using the online softwares we predicted the secondary and tertiary structures along with physicochemical properties of the designed fusion protein. The validation and quality of the fusion protein was confirmed by Rampage and ERRAT2. The top ranked structure from I-TASSER showed 18.1KD molecular weight by ProtParam, quality factor of 94.152 by ERRAT and a valid structure by Ramachandran plot with 88.5% residues in favoured region. The docking and simulation studies were performed using ClusPro and Desmond software. The quality, validity, interaction analysis and stability of the fusion protein depicted a functional molecule. The in silico analysis finding and expression predicted value of 0.86 in E. coli on SOLUPROT tool suggest that the melittin- IL-24 fusion protein can lead to develop a potent therapeutic drug against breast cancer

    Network Pharmacology-Based Approach Combined with Bioinformatic Analytics to Elucidate the Potential of Curcumol against Hepatocellular Carcinoma

    No full text
    Purpose: Modern, open-source databases provide an unprecedented wealth of information to help drug development. By combining data available in these databases with the proper bioinformatical tools, we can elucidate the molecular targets of natural compounds. One such molecule is curcumol, a guaiane-type sesquiterpenoid hemiketal isolated from Rhizoma Curcumae, which is used for a broad range of diseases in traditional Chinese and Indian medicine. It has been reported to exert anti-tumor activity, but the intrinsic molecular mechanism in hepatocellular carcinoma (HCC) is unclear. Therefore, the present study was designed to reveal the predictive targets and biological mechanisms of curcumol against HCC via a network pharmacology-based approach combined with bioinformatic analytics and to provide proof of concept for further similar investigations. Methods: Data available from open-source databases (Traditional Chinese Medicine Systems Pharmacology, Comparative Toxicogenomic Database, The Cancer Genome Atlas, the Human Protein Atlas project) was processed with the help of a variety of open-source tools (SwissADME, SwissTargetPrediction, JVenn, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, GeneMANIA, Cytoscape). Results: In the present study, the potential of curcumol against HCC was unraveled by network pharmacology-based elucidation. It suggests that curcumol shows exciting druggability with 44 potent homo sapiens biotargets against HCC. The GO terms and KEGG pathways enrichment analyses, curcumol-targets-pathways-HCC network, PPI network, and corresponding in-depth topological analyses, as well as survival analysis, molecular docking simulation indicate that the potential mechanism of curcumol against HCC is complicated, as it may act in various ways, mainly by inducing apoptosis and modulating the inflammatory response, increasing presentation of HCC-specific protein. Conclusion: The present study highlights the potential of curcumol against HCC, giving reference to further experimental study. It also presents a roadmap that can be followed to conduct in silico prescreening of other compounds of interest

    Molecular Characterization, Structural Modeling, and Evaluation of Antimicrobial Activity of Basrai Thaumatin-Like Protein against Fungal Infection

    No full text
    A thaumatin-like protein gene from Basrai banana was cloned and expressed in Escherichia coli. Amplified gene product was cloned into pTZ57R/T vector and subcloned into expression vector pET22b(+) and resulting pET22b-basrai TLP construct was introduced into E. coli BL21. Maximum protein expression was obtained at 0.7 mM IPTG concentration after 6 hours at 37°C. Western blot analysis showed the presence of approximately 20 kDa protein in induced cells. Basrai antifungal TLP was tried as pharmacological agent against fungal disease. Independently Basrai antifungal protein and amphotericin B exhibited their antifungal activity against A. fumigatus; however combined effect of both agents maximized activity against the pathogen. Docking studies were performed to evaluate the antimicrobial potential of TLP against A. fumigatus by probing binding pattern of antifungal protein with plasma membrane ergosterol of targeted fungal strain. Ice crystallization primarily damages frozen food items; however addition of antifreeze proteins limits the growth of ice crystal in frozen foods. The potential of Basrai TLP protein, as an antifreezing agent, in controlling the ice crystal formation in frozen yogurt was also studied. The scope of this study ranges from cost effective production of pharmaceutics to antifreezing and food preserving agent as well as other real life applications

    In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes

    No full text
    The present study explored phytochemicals, porcine pancreatic α-amylase (PPA) and lipase (PPL) inhibitory activities and antioxidant potential of polar and nonpolar extracts of the leaves and flowers of Ocimum basilicum and the in-silico mode of interaction between these enzymes and the major chemical constituents of the herb. The hexane extract (HE) and hydro-ethanolic extract (EE) obtained sequentially were used to estimate PPA and PPL inhibitory and antioxidant activities, total phenolic content (TPC) and total flavonoid content (TFC). Chemical constituents of the essential oils and HE were determined by GC-MS (Gas Chromatography-Mass Spectrometry). For PPA inhibition, IC50 (µg/mL) of the extracts were 0.27-0.37, which were close to 0.24 of acarbose, while for PPL inhibition, IC50 (µg/mL) of the extracts were 278.40-399.65, and that of Orlistat 145.72. The flowers EE was most potent antioxidant followed by leaves EE. The leaves EE had highest TPC and TFC followed of flowers EE. The essential oil of flowers had higher estragole (55%) than linalool (37%), while the essential oil of the leaves had higher linalool (42%) than estragole (38%). The HE of the flowers contained higher estragole (42%) than linalool (23%), while of the HE of the leaves too had higher estragole (65%) than linalool (18%). The in-silico molecular docking study showed linalool and estragole to have considerable PPA and PPL binding potential, which were further investigated through molecular dynamics simulations and binding free energy calculations. The PPA and PPL inhibitory activities of O. basilicum extracts and their notable antioxidant potential propose the herb as a multi-target complimentary medicine for diabetes, obesity and oxidative stress.status: publishe

    In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes

    No full text
    The present study explored phytochemicals, porcine pancreatic α-amylase (PPA) and lipase (PPL) inhibitory activities and antioxidant potential of polar and nonpolar extracts of the leaves and flowers of Ocimum basilicum and the in-silico mode of interaction between these enzymes and the major chemical constituents of the herb. The hexane extract (HE) and hydro-ethanolic extract (EE) obtained sequentially were used to estimate PPA and PPL inhibitory and antioxidant activities, total phenolic content (TPC) and total flavonoid content (TFC). Chemical constituents of the essential oils and HE were determined by GC-MS (Gas Chromatography-Mass Spectrometry). For PPA inhibition, IC50 (µg/mL) of the extracts were 0.27–0.37, which were close to 0.24 of acarbose, while for PPL inhibition, IC50 (µg/mL) of the extracts were 278.40–399.65, and that of Orlistat 145.72. The flowers EE was most potent antioxidant followed by leaves EE. The leaves EE had highest TPC and TFC followed of flowers EE. The essential oil of flowers had higher estragole (55%) than linalool (37%), while the essential oil of the leaves had higher linalool (42%) than estragole (38%). The HE of the flowers contained higher estragole (42%) than linalool (23%), while of the HE of the leaves too had higher estragole (65%) than linalool (18%). The in-silico molecular docking study showed linalool and estragole to have considerable PPA and PPL binding potential, which were further investigated through molecular dynamics simulations and binding free energy calculations. The PPA and PPL inhibitory activities of O. basilicum extracts and their notable antioxidant potential propose the herb as a multi-target complimentary medicine for diabetes, obesity and oxidative stress. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Novel high-risk missense mutations identification in FAT4 gene causing Hennekam syndrome and Van Maldergem syndrome 2 through molecular dynamics simulation

    No full text
    Hennekam syndrome (HS) is an autosomal recessive disease in the pathogenesis of which lymphangiectasia and lymphedema plays a key role. HS is associated with mutations in CCBE1, FAT4, and ADAMTS3 proteins that somehow affect the activation of the primary lymphangiogenic growth factor VEGF-C. We used several in silico methods to test this theory. According to NCBI, FAT4 gene contains 3,343 non-synonymous SNPs, of which 298 were predicted to be deleterious using SIFT and Polyphen2. These 298 SNPs were further studied using various mutation prediction tools. Our results showed that eleven nsSNPs (D2978G, V986D, Y1912C, R4799C, D1022G, G4786R, D2439E, E2426Q, R4643C, N1309I, and Y2909H) detected by these tools are deleterious. Additionally, three mutations in FAT4 gene (rs12650153, rs1567047, and rs1039808) in patient suspected with HS were discovered through candidate variant filtering of whole-exome sequencing, and in silico study of these mutations revealed that these are highly destabilizing the protein structure and function. Using molecular dynamics simulation (MDS) we focused on the mutations (11 mutations predicted by our insilco study, 3 reported in the patient and 5 already published mutations for HS and VMS), while one mutation (G4786R) was detected in the MPDZ domain. The RMSD and RMSF supports the destability of mutant protein compared to wild type. The mutations found in this cohort of studies have not previously been reported for HS. These mutations may contribute to better understanding of disease predisposition associated with FAT4 Cadherin-like domain activation and further aid to effective approaches for diagnosis and treatment of the disorder

    A Putative Prophylactic Solution for COVID-19: Development of Novel Multiepitope Vaccine Candidate against SARS‐COV‐2 by Comprehensive Immunoinformatic and Molecular Modelling Approach

    No full text
    The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the world health organization declared it pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. In this urgency situation, development of SARS-CoV-2 based vaccines is immediately required. Immunoinformatic and molecular modelling are generally used time-efficient methods to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines is proved to be a promising immunization strategy against viruses and pathogens, which induce more comprehensive protective immunity. The current study demonstrated a comprehensive in-silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in-silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in E. Coli. Despite this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can present to be a better prophylactic solution against COVID-19.status: publishe
    corecore