10 research outputs found

    Transgenic flash mice for in vivo quantitative monitoring of canonical wnt signaling to track hair follicle cycle dynamics

    No full text
    Hair follicles (HFs) upon development enter a lifelong cycle of growth, regression, and resting. These phases have been extensively studied at the cellular and molecular levels for individual HFs. However, HFs group into domains with coordinated cycling strongly influenced by their environment. These macroscopic hair domains have been difficult to study and can be influenced by physiological or pathological conditions, such as pregnancy or skin wounds. To robustly address this issue, we generated a mouse model for quantitative monitoring of β-catenin activity reflecting HF cycle dynamics macroscopically by using live bioluminescence imaging. These mice allowed live tracking of HF cycles and development, and highlighted hair regenerative patterns known to occur through macro-environmental cues, including initiation events, propagating anagen and border stability, and allowed refinement of a mechanistic mathematical model that integrates epidermal cell population dynamics into an excitable reaction-diffusion model. HF cycling could be studied in situations of pregnancy, wound healing, hair plucking, as well as in response to cyclosporine or Wnt3a stimulation. In conclusion, we developed a model for analysis of HF cycling at the macroscopic level that will allow refined analysis of hair cycle kinetics as well as its propagation dynamics

    Differential effects of ultraviolet irradiation in neonatal versus adult mice are not explained by defective macrophage or neutrophil infiltration.

    Get PDF
    Epidemiological studies suggest that ultraviolet B exposure (UVR) during childhood is the most important environmental risk factor for melanoma. In accordance, neonatal, but not adult, UVR exacerbates melanoma incidence in mouse models. The inability of neonates, as opposed to adults, to mount a proper neutrophil inflammatory response in the skin upon UVR exposure has been one of the driving hypotheses explaining this observation for the past decade. However, this aspect remains controversial. Here, we evaluated the UVR-induced inflammatory response in neonatal versus adult mice. In neonates, a significant neutrophil infiltration could be identified and quantified using three different antibodies by flow cytometry or immunohistochemistry. On day 1 after UVR, neutrophils were increased by 84-fold and on day 4 macrophages increased by 37-fold compared with nonexposed age-matched skin. When compared with adults, neonatal skin harbored a higher proportion of neutrophils in the myeloid compartment without significant differences in absolute counts. This response was reproduced with different kinetics in C57Bl/6 and FVB mice with a more rapid attenuation of neutrophil counts in the latter. Overall, our results suggest that the greatly increased sensitivity to melanomagenesis in neonates does not result from their incompetence in terms of myeloid inflammatory response to UVR

    Patched1 inhibits epidermal progenitor cell expansion and basal cell carcinoma formation by limiting Igfbp2 activity

    No full text
    Basal cell carcinoma (BCC) of the skin is the most common form of cancer, with the majority being caused by mutations in the Patched1 (Ptch1) gene, leading to activation of the Hedgehog (Hh) signaling pathway. Hh signaling is implicated in many tumor types; thus, defining the mechanisms by which Ptch1 regulates tissue proliferation is of paramount importance. Here, we show that the key role of Ptch1 in the skin is to limit the size of the epidermal stem/progenitor compartment and allow hair follicle differentiation. Specifically, loss of Ptch1 leads to the promotion of progenitor cell fate by increasing basal cell proliferation and limiting the progression of basal cells into differentiated hair follicle cell types. Our data indicate that BCCs likely result from hair follicle progenitor cells that, due to Hh signal activation, cannot progress through normal hair follicle differentiation. These data confirm the role of Ptch1 as a negative regulator of epidermal progenitor turnover and also show for the first time that Ptch1 plays a role in the differentiation of the hair follicle lineage. In addition, we show that insulin-like growth factor binding protein 2 (Igfbp2) is upregulated in both murine and human BCCs and that blocking Igfbp2 activity reduces the Hh-mediated expansion of epidermal progenitor cells. We propose that Igfbp2 mediates epidermal progenitor cell expansion and therefore represents an epidermal progenitor cell-specific target of Hh signaling that promotes BCC development. Cancer Prev Res; 3(10); 1222-34. (c) 2010 AACR

    The role of cellular reactive oxygen species in cancer chemotherapy

    No full text
    Most chemotherapeutics elevate intracellular levels of reactive oxygen species (ROS), and many can alter redox-homeostasis of cancer cells. It is widely accepted that the anticancer effect of these chemotherapeutics is due to the induction of oxidative stress and ROS-mediated cell injury in cancer. However, various new therapeutic approaches targeting intracellular ROS levels have yielded mixed results. Since it is impossible to quantitatively detect dynamic ROS levels in tumors during and after chemotherapy in clinical settings, it is of increasing interest to apply mathematical modeling techniques to predict ROS levels for understanding complex tumor biology during chemotherapy. This review outlines the current understanding of the role of ROS in cancer cells during carcinogenesis and during chemotherapy, provides a critical analysis of the methods used for quantitative ROS detection and discusses the application of mathematical modeling in predicting treatment responses. Finally, we provide insights on and perspectives for future development of effective therapeutic ROS-inducing anticancer agents or antioxidants for cancer treatment

    Murine dorsal hair type is genetically determined by polymorphisms in candidate genes that influence BMP and WNT signalling

    No full text
    Mouse dorsal coat hair types, guard, awl, auchene and zigzag, develop in three consecutive waves. To date, it is unclear if these hair types are determined genetically through expression of specific factors or can change based on their mesenchymal environment. We undertook a novel approach to this question by studying individual hair type in 67 Collaborative Cross (CC) mouse lines and found significant variation in the proportion of each type between strains. Variation in the proportion of zigzag, awl, and auchene, but not guard hair, was largely due to germline genetic variation. We utilised this variation to map a quantitative trait locus (QTL) on chromosome 12 that appears to influence a decision point switch controlling the propensity for either second (awl and auchene) or third wave (zigzag) hairs to develop. This locus contains two strong candidates, Sostdc1 and Twist1, each of which carry several ENCODE regulatory variants, specific to the causal allele, that can influence gene expression, are expressed in the developing hair follicle, and have been previously reported to be involved in regulating human and murine hair behaviour, but not hair subtype determination. Both of these genes are likely to play a part in hair type determination via regulation of BMP and/or WNT signalling

    Murine basal cell carcinoma leads to tumor mediated alterations in endocrine lgf1 signaling

    No full text
    The intrinsic properties underlying cancer development are extensively studied while the effect of a cancer on the host is often overlooked. Activation of the Hedgehog (Hh) signaling pathway underlies a number of types of common human cancers, yet little is known concerning endocrine signaling in such tumors. Here, we investigated endocrine signaling in a murine model of basal cell carcinoma (BCC) of the skin, the most common cancer. BCCs were generated by the activation of Hh signaling resulting from the specific deletion of the Ptch1 gene in the developing epidermis. Subsequently, a severe growth deficiency was observed in the murine BCC model, and we identified a deficiency of circulating IGF1 (Igf1). We demonstrate that Hh pathway activation in murine BCC induces IGF binding proteins, thereby regulating Igf1 sequestration into the skin and skewing Igf endocrine signaling. Significantly, these results show that Hh-induced tumors can have endocrine effects on normal tissues that in turn can greatly impact the host. This study not only identifies that Igf is important in Hh-associated skin tumors but also exemplifies the need to consider endocrine signaling when interpreting complex in vivo tumor models

    The hedgehog receptor Patched1 regulates myeloid and lymphoid progenitors by distinct cell-extrinsic mechanisms

    No full text
    Hedgehog (Hh) ligands bind to the Patched1 (Ptch1) receptor, relieving repression of Smoothened, which leads to activation of the Hh signaling pathway. Using conditional Ptch1 knockout mice, the aim of this study was to determine the effects of activating the Hh signaling pathway in hematopoiesis. Surprisingly, hematopoietic-specific deletion of Ptch1 did not lead to activation of the Hh signaling pathway and, consequently, had no phenotypic effect. In contrast, deletion of Ptch1 in nonhematopoietic cells produced 2 distinct hematopoietic phenotypes. First, activation of Hh signaling in epithelial cells led to apoptosis of lymphoid progenitors associated with markedly elevated levels of circulating thymic stromal lymphopoietin. Second, activation of Hh signaling in the bone marrow cell niche led to increased numbers of lineage-negative c-kit+ Sca-1+ bone marrow cells and mobilization of myeloid progenitors associated with a marked loss of osteoblasts. Thus, deletion of Ptch1 leads to hematopoietic effects by distinct cell-extrinsic mechanisms rather than by direct activation of the Hh signaling pathway in hematopoietic cells. These findings have important implications for therapeutics designed to activate the Hh signaling pathway in hematopoietic cells including hematopoietic stem cells
    corecore