15 research outputs found

    Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: in vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery

    No full text
    Nimodipine (NM) is the only FDA-approved drug for treating subarachnoid hemorrhage induced vasospasm. NM has poor oral bioavailability (5–13%) due to its low aqueous solubility, and extensive first pass metabolism. The objective of this study is to develop radiolabeled NM-loaded LPM and to test its ability prolong its circulation time, reduce its frequency of administration and eventually target it to the brain tissue. NM was radiolabeled with 99mTc by direct labeling method using sodium dithionite. Different reaction conditions that affect the radiolabeling yield were studied. The in vivo pharmacokinetic behavior of the optimum NM-loaded LPM formulation in blood, heart, and brain tissue was compared with NM solution, after intravenous and intranasal administration. Results show that the radioactivity percentage (%ID/g) in the heart of mice following administration of 99mTc-NM loaded LPM were lower compared with that following administration of 99mTc-NM solution, which is greatly beneficial to minimize the cardiovascular side effects. Results also show that the %ID/g in the blood, and brain following intravenous administration of 99mTc-NM-loaded LPM were higher at all sampling intervals compared with that following intravenous administration of 99mTc-NM solution. This would be greatly beneficial for the treatment of neurovascular diseases. The drug-targeting efficiency of NM to the brain after intranasal administration was calculated to be 1872.82%. The significant increase in drug solubility, enhanced drug absorption and the long circulation time of the NM-loaded LPM could be promising to improve nasal and parenteral delivery of NM

    Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery

    No full text
    Recently, the occurrence of cancer has significantly increased; it represents the second-most frequent cause of death after cardiovascular diseases. Many dietary antioxidants have shown large impact as effective agents for cancer prevention by reducing oxidative stress, which has been a part in the development of many diseases, including cancer. One of the obstacles in the delivery of antioxidant therapies into the required domain lies in the inadequate delivery of these agents to their intended site of action. Using nanotechnology in delivery of antioxidants leads to increased therapeutic index and higher drug concentration in tumor tissues, thus enhancing anticancer treatment. In this review, we discuss the role of different antioxidants in cancer therapy and their improved therapeutic effect through their formulation using nanotechnology

    Antibacterial and Anti-Inflammatory Activities of <i>Thymus vulgaris</i> Essential Oil Nanoemulsion on Acne Vulgaris

    No full text
    Antibiotics are frequently used in acne treatment and their prolonged use has led to an emergence of resistance. This study aimed to investigate the use of natural antimicrobials as an alternative therapy. The antimicrobial and anti-inflammatory activities of five commonly used essential oils (EOs) (tea tree, clove, thyme, mentha and basil EOs), and their possible mechanisms of action against Cutibacterium acnes and Staphylococcus epidermidis, were explored. The effect of the most potent EO on membrane permeability was elucidated and its anti-inflammatory action, when formulated as nanoemulsion, was tested in an in vivo acne model. The in vitro studies showed that thyme EO had the most potent antimicrobial and antibiofilm activity, with phenolics and terpenoids as main antimicrobial constituents of EO. Thyme EO affected cell membrane permeability of both bacterial species, evident by the detection of the leakage of intracellular ions and membrane integrity by the leakage of nucleic acids. Morphological alteration in bacterial cells was confirmed by transmission electron microscopy. Thyme EO nanoemulsion led to the suppression of an inflammatory response in acne animal models along with a bacterial load decrease and positive histopathological changes. Collectively, thyme EO nanoemulsion showed potent antimicrobial and anti-inflammatory effects compared to the reference antibiotics, suggesting its effectiveness as a natural alternative in acne treatment

    Facile development, characterization, and optimization of new metformin-loaded nanocarrier system for efficient colon cancer adjunct therapy

    No full text
    <p><b>Purpose:</b> Metformin hydrochloride (MF) repurposing as adjuvant anticancer therapy for colorectal cancer (CRC) proved effective. Several studies attempted to develop MF-loaded nanoparticles (NPs), however the entrapment efficiency (EE%) was poor. Thus, the present study aimed at the facile development of a new series of chitosan (CS)-based semi-interpenetrating network (semi-IPN) NPs incorporating Pluronic<sup>®</sup> nanomicelles as nanocarriers for enhanced entrapment and sustained release of MF for efficient treatment of CRC.</p> <p><b>Methods:</b> The NPs were prepared by ionic gelation and subsequently characterized using FTIR, DSC, TEM, and DLS. A full factorial design was also adopted to study the effect of various formulation variables on EE%, particle size, and zeta-potential of NPs.</p> <p><b>Results:</b> NPs had a spherical shape and a mean particle size ranging between 135 and 220 nm. FTIR and DSC studies results were indicative of successful ionic gelation with the drug being dispersed in its amorphous form within CS-Pluronic<sup>®</sup> matrix. Maximum EE% reaching 57.00 ± 12.90% was achieved using Pluronic<sup>®</sup>-123 based NPs. NPs exhibited a sustained release profile over 48 h. The MF-loaded NPs sensitized RKO CRC cells relative to drug alone.</p> <p><b>Conclusion:</b> The reported results highlighted the novel utility of the developed NPs in the arena of colon cancer treatment.</p

    Characterization, cellular uptake in Caco-2 cells and physiologically based pharmacokinetic modeling of baicalin-loaded solid lipid nanoparticles

    No full text
    Abstract Background Baicalin is a natural compound having intriguing and useful pharmacological properties that may be used alone or in conjunction with other treatments in a variety of therapeutic areas. However, the drug has low aqueous solubility and poor absorption. The aim of this research was to optimize the bioavailability of baicalin through incorporation into solid lipid nanoparticles. Results The particle size of the prepared baicalin-loaded solid lipid nanoparticles ranged between 248.2 ± 1.72 nm and 291.9 ± 30.9 nm. The speed, duration of homogenization and the content of both the surfactant and soy lecithin affected the particle size and the entrapment efficiency. The optimized formula showed superiority in drug release over the drug suspension, with biphasic release profile. Cell culture results showed good accumulation of the drug into the Caco-2 cells that increases over time in the case of the optimized formula. Physiologically based pharmacokinetic (PBPK) modeling simulated enhanced bioavailability of the optimized formula, compared to the drug suspension. Conclusion Solid lipid nanoparticles have demonstrated potential as cancer therapy nanocarriers. Reduced toxicity, improved drug absorption and flexibility in combining hydrophilic and lipophilic medications are all significant advantages of this system. The PBPK simulation suggested the safety of the optimized BA-SLNs in cancer patients and in geriatric populations

    Itraconazole-Loaded Ufasomes: Evaluation, Characterization, and Anti-Fungal Activity against <i>Candida albicans</i>

    No full text
    Numerous obstacles challenge the treatment of fungal infections, including the uprising resistance and the low penetration of available drugs. One of the main active agents against fungal infections is itraconazole (ITZ), with activity against a broad spectrum of fungi while having few side effects. The aim of this study was to design ufasomes, oleic acid-based colloidal carriers, that could encapsulate ITZ to improve its penetration power. Employing a 2231 factorial design, the effect of three independent factors (oleic acid amount, cholesterol concentration, and ITZ amount) was investigated and evaluated for the percentage encapsulation efficiency (%EE), particle size (PS), and zeta potential (ZP). Optimization was performed using Design® expert software and the optimized ITZ-loaded ufasomes obtained had %EE of 99.4 ± 0.7%, PS of 190 ± 1 nm, and ZP of −81.6 ± 0.4 mV, with spherical unilamellar morphology and no aggregation. An in vitro microbiological study was conducted to identify the minimum inhibitory concentration of the selected formula against Candida albicans, which was found to be 0.0625 μg/mL. Moreover, the optimized formula reduced the expression of toll-like receptors-4 and pro-inflammatory cytokine IL-1β secretion in the C. albicans-infected fibroblasts, indicating that the proposed ITZ-loaded ufasomes are a promising drug delivery system for ITZ

    Origanum vulgare L. Essential Oil as a Potential Anti-Acne Topical Nanoemulsion—In Vitro and In Vivo Study

    No full text
    Antibiotics are often prescribed in acne treatment; however, Propionibacterium acnes and Staphylococcus epidermidis, the two of the major acne-associated bacteria, developed antibiotic resistance. Essential oils (EOs) present a natural, safe, efficacious and multifunctional alternative treatment. This study aimed to assess the potential anti-acne activity of selected seven EOs commonly used in Mediterranean folk medicine. Antimicrobial activity screening of these oils showed oregano to exhibit the strongest antimicrobial activity with minimum inhibitory concentration (MIC) of 0.34 mg/mL and minimum bactericidal concentration (MBC) of 0.67 mg/mL against P. acnes; and MIC of 0.67 mg/mL and MBC of 1.34 mg/mL against S. epidermidis. The composition of the most effective EOs (oregano and thyme) was determined using gas chromatography-mass spectrometry (GC-MS). Monoterpenoid phenols predominated oregano and thyme EO with thymol percentile 99 and 72, respectively. Thymol showed MIC 0.70 mg/mL against both P. acnes and S. epidermidis whereas MBC was 1.40 and 2.80 mg/mL against P. acnes and S. epidermidis, respectively. Moreover, oregano exhibited the strongest anti-biofilm effect against S. epidermidis with MBIC 1.34 mg/mL and killing dynamic time of 12 and 8 h against P. acnes and S. epidermidis, respectively. Oregano, the most effective EO, was formulated and tested as a nanoemulsion in an acne animal mouse model. The formulation showed superior healing and antimicrobial effects compared to the reference antibiotic. Collectively, our data suggested that oregano oil nanoemulsion is a potential natural and effective alternative for treating acne and overcoming the emerging antibiotic resistance

    Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension

    No full text
    Pulmonary delivery of vasodilators is a promising alternative for the intravenous and oral treatment of pulmonary arterial hypertension (PAH). The aim of this study was to design and evaluate hydrogel microparticles as a carrier for sustained pulmonary delivery of sildenafil citrate. Spray dried hydrogel microparticles containing biodegradable sodium carboxymethyl cellulose, sodium alginate, and sodium hyaluronate polymers at variable concentrations were prepared. A design of experiment using the “Extreme Vertices Mixture” design was executed. The design was used to study the influence of polymer concentration and their interactions on the physicochemical properties of the formulations in terms of particle size, particle size distribution, product yield, entrapment efficiency, and in-vitro drug release. Selected formulations were also evaluated for swelling, biodegradation, moisture content, in-vitro aerodynamic performance, and cytotoxicity. In addition, a lung deposition and pharmacokinetic study was conducted in rats to study drug accumulation in lungs and blood after intratracheal administration of the spray dried inhalable hydrogel microparticles in comparison to orally administered Viagra®. The results demonstrated that formulated microparticles had a mean geometric particle size between 2 and 5 μm, entrapment efficiency of \u3e80%, and yield ranging between 47 and 66% w/w. The in-vitro drug release profiles showed a sustained drug release of sildenafil citrate for over 24 h. The statistical design showed a significant influence of the microparticulate composition on the physicochemical properties. Furthermore, selected formulations were evaluated for their aerodynamic properties. The aerodynamic properties included fine particle fraction ranging between 24 and 30%, dose recovery percent of 68–8 5%, and average mass median aerodynamic diameter of 4.6–4.8 μm. The in-vivo pharmacokinetic study showed that inhaled spray dried hydrogel microparticles (M6) formulation had significantly higher lung/blood Cmax, AUC, extended half-life, and mean residence time in comparison to orally administered sildenafil citrate of the same dose. In conclusion, the formulated drug-loaded spray dried hydrogel microparticles showed promising in-vitro and in-vivo results for the pulmonary delivery of sildenafil citrate. The spray dried hydrogel microparticles formulation can be considered as a potential alternative of oral sildenafil citrate for treatment of PAH
    corecore