87 research outputs found
Synthesis, structure and magnetic properties ofβ-MnO2nanorods
We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline β-MnO2nanorods of 50–100 nm diameter and several µm length. Thorough structural characterization shows that the basic β-MnO2material is covered by a thin surface layer (∼2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the β-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated β-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases
Understanding the errors of SHAPE-directed RNA structure modeling
Single-nucleotide-resolution chemical mapping for structured RNA is being
rapidly advanced by new chemistries, faster readouts, and coupling to
computational algorithms. Recent tests have shown that selective 2'-hydroxyl
acylation by primer extension (SHAPE) can give near-zero error rates (0-2%) in
modeling the helices of RNA secondary structure. Here, we benchmark the method
using six molecules for which crystallographic data are available: tRNA(phe)
and 5S rRNA from Escherichia coli, the P4-P6 domain of the Tetrahymena group I
ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic
di-GMP, and glycine. SHAPE-directed modeling of these highly structured RNAs
gave an overall false negative rate (FNR) of 17% and a false discovery rate
(FDR) of 21%, with at least one helix prediction error in five of the six
cases. Extensive variations of data processing, normalization, and modeling
parameters did not significantly mitigate modeling errors. Only one varation,
filtering out data collected with deoxyinosine triphosphate during primer
extension, gave a modest improvement (FNR = 12%, and FDR = 14%). The residual
structure modeling errors are explained by the insufficient information content
of these RNAs' SHAPE data, as evaluated by a nonparametric bootstrapping
analysis. Beyond these benchmark cases, bootstrapping suggests a low level of
confidence (<50%) in the majority of helices in a previously proposed
SHAPE-directed model for the HIV-1 RNA genome. Thus, SHAPE-directed RNA
modeling is not always unambiguous, and helix-by-helix confidence estimates, as
described herein, may be critical for interpreting results from this powerful
methodology.Comment: Biochemistry, Article ASAP (Aug. 15, 2011
Analysis of the Peptidoglycan Hydrolase Complement of Lactobacillus casei and Characterization of the Major γ-D-Glutamyl-L-Lysyl-Endopeptidase
Peptidoglycan (PG) is the major component of Gram positive bacteria cell wall and is essential for bacterial integrity and shape. Bacteria synthesize PG hydrolases (PGHs) which are able to cleave bonds in their own PG and play major roles in PG remodelling required for bacterial growth and division. Our aim was to identify the main PGHs in Lactobacillus casei BL23, a lactic acid bacterium with probiotic properties
Chromosomal organization at the level of gene complexes
Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized
Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription
Abstract Background RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. Results In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. Conclusions This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize
Scaling the state: Egypt in the third millennium BC
Discussions of the early Egyptian state suffer from a weak consideration of scale. Egyptian archaeologists derive their arguments primarily from evidence of court cemeteries, elite tombs, and monuments of royal display. The material informs the analysis of kingship, early writing, and administration but it remains obscure how the core of the early Pharaonic state was embedded in the territory it claimed to administer. This paper suggests that the relationship between centre and hinterland is key for scaling the Egyptian state of the Old Kingdom (ca. 2,700-2,200 BC). Initially, central administration imagines Egypt using models at variance with provincial practice. The end of the Old Kingdom demarcates not the collapse, but the beginning of a large-scale state characterized by the coalescence of central and local models
- …