87 research outputs found

    Economic and biological costs of cardiac imaging

    Get PDF
    Medical imaging market consists of several billion tests per year worldwide. Out of these, at least one third are cardiovascular procedures. Keeping in mind that each test represents a cost, often a risk, and a diagnostic hypothesis, we can agree that every unnecessary and unjustifiable test is one test too many. Small individual costs, risks, and wastes multiplied by billions of examinations per year represent an important population, society and environmental burden. Unfortunately, the appropriateness of cardiac imaging is extra-ordinarily low and there is little awareness in patients and physicians of differential costs, radiological doses, and long term risks of different imaging modalities. For a resting cardiac imaging test, being the average cost (not charges) of an echocardiogram equal to 1 (as a cost comparator), the cost of a CT is 3.1x, of a SPECT 3.27x, of a Cardiovascular Magnetic Resonance imaging 5.51x, of a PET 14.03x, and of a right and left heart catheterization 19.96x. For stress cardiac imaging, compared with the treadmill exercise test equal to 1 (as a cost comparator), the cost of stress echocardiography is 2.1x and of a stress SPECT scintigraphy is 5.7x. Biohazards and downstream long-term costs linked to radiation-induced oncogenesis should also be considered. The radiation exposure is absent in echo and magnetic resonance, and corresponds to 500 chest x rays for a sestamibi cardiac stress scan and to 1150 chest x rays for a thallium scan. The corresponding extra-risk in a lifetime of fatal cancer is 1 in 2000 exposed patients for a sestamibi stress and 1 in 1000 for a thallium scan. Increased awareness of economic, biologic, and environmental costs of cardiac imaging will hopefully lead to greater appropriateness, wisdom and prudence from both the prescriber and the practitioner. In this way, the sustainability of cardiac imaging will eventually improve

    The biological effects of diagnostic cardiac imaging on chronically exposed physicians: the importance of being non-ionizing

    Get PDF
    Ultrasounds and ionizing radiation are extensively used for diagnostic applications in the cardiology clinical practice. This paper reviewed the available information on occupational risk of the cardiologists who perform, every day, cardiac imaging procedures. At the moment, there are no consistent evidence that exposure to medical ultrasound is capable of inducing genetic effects, and representing a serious health hazard for clinical staff. In contrast, exposure to ionizing radiation may result in adverse health effect on clinical cardiologists. Although the current risk estimates are clouded by approximations and extrapolations, most data from cytogenetic studies have reported a detrimental effect on somatic DNA of professionally exposed personnel to chronic low doses of ionizing radiation. Since interventional cardiologists and electro-physiologists have the highest radiation exposure among health professionals, a major awareness is crucial for improving occupational protection. Furthermore, the use of a biological dosimeter could be a reliable tool for the risk quantification on an individual basis

    A New Extremity Dosemeter System Based on Thermoluminescence Dosimetry

    No full text

    Systematic survey of the dose enhancement in tissue-equivalent materials facing medium- and high-Z backscatterers exposed to X-rays with energies from 5 to 250 keV.

    No full text
    The present study has been inspired by the results of earlier dose measurements in tissue-equivalent materials adjacent to thin foils of aluminum, copper, tin, gold, and lead. Large dose enhancements have been observed in low-Z materials near the interface when this ensemble was irradiated with X-rays of qualities known from diagnostic radiology. The excess doses have been attributed to photo-, Compton, and Auger electrons released from the metal surfaces. Correspondingly, high enhancements of biological effects have been observed in single cell layers arranged close to gold surfaces. The objective of the present work is to systematically survey, by calculation, the values of the dose enhancement in low-Z media facing backscattering materials with a variety of atomic numbers and over a large range of photon energies. Further parameters to be varied are the distance of the point of interest from the interface and the kind of the low-Z material. The voluminous calculations have been performed using the PHOTCOEF algorithm, a proven set of interpolation functions fitted to long-established Monte Carlo results, for primary photon energies between 5 and 250 keV and for atomic numbers varying over the periodic system up to Z = 100. The calculated results correlate well with our previous experimental results. It is shown that the values of the dose enhancement (a) vary strongly in dependence upon Z and photon energy; (b) have maxima in the energy region from 40 to 60 keV, determined by the K and L edges of the backscattering materials; and (c) are valued up to about 130 for "International Commission on Radiological Protection (ICRP) soft tissue" (soft tissue composition recommended by the ICRP) as the adjacent low-Z material. Maximum dose enhancement associated with the L edge occurs for materials with atomic numbers between 50 and 60, e.g., barium (Z = 56) and iodine (Z = 53). Such materials typically serve as contrast media in medical X-ray diagnostics. The gradual reduction in the dose enhancement with increasing distance from the material interface, owed to the limited ranges of the emitted secondary electrons, has been documented in detail. The discussion is devoted to practical radiological aspects of the dose enhancement phenomenon. Cytogenetic effects in cell layers closely proximate to surfaces of medium-Z materials might vary over two orders of magnitude, because the dose enhancement is accompanied by the earlier observed about twofold increase in the low-dose RBEM at a tissue-to-gold interface
    • …
    corecore