5 research outputs found

    Fast purification of the Apo form and of a non-binding heme mutant of recombinant sperm whale myoglobin

    No full text
    As molecular biology has developed it has become possible to abundantly produce heterologous proteins in bacteria and to design serial amino acid substitutions for the generation of modified proteins, an approach also known as protein engineering. Sperm whale myoglobin, a protein of broad interest, has been cloned for several years now and a large collection of mutants has been produced. The presence of heme stabilizes the protein, which is recovered soluble from the bacterial pellet, and most purification protocols take advantage of this property for myoglobin purification directly from the pellet. However, recovery from the column resin is poor with these methods making them expensive and the procedure for removing heme is laborious and drastic when the apo form of Mb is required. In the case of proteins with severe mutations, which bind heme weakly or do not bind it at all, such methods cannot be employed without massive loss of productivity. Here, we describe a modified method, which is both low cost and rapid, for the purification of the soluble apo form of Mb from Escherichia coli inclusion bodies. Biophysical characterization of the protein after purification shows that the purified apoMb retains its native conformation and is soluble. This modified method is also used for the purification of a non-heme-binding apoMb mutant, demonstrating its efficiency when dealing with drastic mutations. (C) 2002 Elsevier Science (USA). All rights reserved.28120220

    On the difference in stability between horse and sperm whale myoglobins

    No full text
    The work in the literature on apomyoglobin is almost equally divided between horse and sperm whale myoglobins. The two proteins share high homology, show similar folding behavior, and it is often assumed that all folding phenomena found with one protein will also be found with the other. We report data at equilibrium showing that horse myoglobin was 2.1 kcal/mol less stable than sperm whale myoglobin at pH 5.0 and aggregated at high concentrations as measured by gel filtration and analytical ultracentrifugation experiments. The higher stability of sperm whale myoglobin was identified for both apo and holo forms, and was independent of pH from 5 to 8 and of the presence of sodium chloride. We also show that the substitution of sperm whale myoglobin residues Ala 15 and Ala74 to Gly, the residues found at positions 15 and 74 in horse myoglobin, decreased the stability by 1.0 kcal/mol, indicating that helix propensity is an important component of the explanation for the difference in stability between the two proteins. (c) 2005 Elsevier Inc. All rights reserved.436116817

    Small angle X-ray scattering of the hemoglobin from Biomphalaria glabrata

    No full text
    The hemoglobin from Biomphalaria glabrata is an extracellular respiratory protein of high molecular mass composed by subunits of 360 kDa, each one containing two 180 kDa chains linked by disulfide bridges. In this work, small angle x-ray scattering (SAXS) measurements were performed with the hemoglobin at pH 5.0 and 7.5. Radii of gyration of 98.6 +/- 0.5 and 101.8 +/- 0.2 A and maximum diameters of 300 +/- 10 and 305 +/- 10 Angstrom, respectively, were obtained from Guinier plot extrapolation and analytical curve fitting. The pair distance distribution functions p(r) corresponded to globular particles with a somewhat anisotropic shape for both preparations. Computer analysis of the low angle part of the scattering curve led to the determination of the low resolution envelope of the protein, revealing a P-222 symmetry. Shape reconstruction from ab initio calculations using the complete scattering curve furnished a compact prolate three-dimensional (3D) bead model for the protein. Hydrodynamic parameters were obtained from experiments and theoretical calculations using the 3D model. The results of the structural and biochemical studies reported herein indicate that the multisubunit structure of this hemoglobin is compatible with a tetrameric arrangement. (C) 2003 Wiley Periodicals, Inc.69447047

    The NMR-derived solution structure of a new cationic antimicrobial peptide from the skin secretion of the anuran Hyla punctata

    No full text
    Amphibian skin secretions constitute an important source of molecules for antimicrobial drug research in order to combat the increasing resistance of pathogens to conventional antibiotics. Among the various types of substances secreted by the dermal granular amphibian glands, there is a wide range of peptides and proteins, often displaying potent antimicrobial activities and providing an effective defense system against parasite infection. In the present work, we report the NMR solution structure and the biological activity of a cationic 14-residue amphiphilic alpha-helical polypeptide named Hylaseptin P1 ( HSP1), isolated from the skin secretion of the hylid frog Hyla punctata. The peptide antimicrobial activity was verified against Candida albicans, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, whereas no significant lytic effect was detected toward red or white blood cells.27913130181302
    corecore