45 research outputs found

    Transport in polymer-gel composites: Theoretical methodology and response to an electric field

    Full text link
    A theoretical model of electromigrative, diffusive and convectivetransport polymer-gel composites is presented. Bulk properties are derived from the standard electrokinetic model with an impenetrable charged sphere embedded in an electrolyte-saturated Brinkman medium. Because the microstructure can be carefully controlled, these materials are promising candidates for enhanced gel-electrophoresis, chemical sensing, drug delivery, and microfluidic pumping technologies. The methodology provides `exact' solutions for situations where perturbations from equilibrium are induced by gradients of electrostatic potential, concentration and pressure. While the volume fraction of the inclusions should be small, Maxwell's well-known theory of conduction suggests that the theory may also be accurate at moderate volume fractions. In this work, the model is used to compute ion fluxes, electrical current density, and convective flow induced by an applied electric field. The electric-field-induced (electro-osmotic) flow is a sensitive indicator of the inclusion zeta-potential and size, electrolyte concentration, and Darcy permeability of the gel, while the electrical conductivity increment is most often independent of the polymer gel, and is much less sensitive to particle and electrolyte characteristics

    Reverse-selective diffusion in nanocomposite membranes

    Full text link
    The permeability of certain polymer membranes with impenetrable nanoinclusions increases with the particle volume fraction (Merkel et al., Science, 296, 2002). This intriguing observation contradicts even qualitative expectations based on Maxwell's classical theory of conduction/diffusion in composites with homogeneous phases. This letter presents a simple theoretical interpretation based on classical models of diffusion and polymer physics. An essential feature of the theory is a polymer-segment depletion layer at the inclusion-polymer interface. The accompanying increase in free volume leads to a significant increase in the local penetrant diffusivity, which, in turn, increases the bulk permeability while exhibiting reverse selectivity. This model captures the observed dependence of the bulk permeability on the inclusion size and volume fraction, providing a straightforward connection between membrane microstructure and performance

    Birkman Screening and the Covariance of the Fluid Velocity of Fixed Beds

    Get PDF
    The phenomenon of Brinkman screening, whereby the fluid velocity disturbance produced by each particle in a fixed bed is attenuated by the forces that the fluid exerts on surrounding particles, plays a crucial role in limiting the range of velocity correlations in porous media and fixed beds. Koch and Brady [J. Fluid Mech. 154, 399 (1985)] showed theoretically that Brinkman screening leads to a finite hydrodynamic diffusion coefficient for fluid phase tracers in dilute fixed beds. In this Letter, we present the results of two simulation techniques (lattice-Boltzmann method and a multipole method) confirming the screening of the fluid velocity covariance that underlies the Koch and Brady theory

    Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium

    Full text link
    When an electric field is applied to an electrolyte-saturated polymer gel embedded with charged colloidal particles, the force that must be exerted by the hydrogel on each particle reflects a delicate balance of electrical, hydrodynamic and elastic stresses. This paper examines the displacement of a single charged spherical inclusion embedded in an uncharged hydrogel. We present numerically exact solutions of coupled electrokinetic transport and elastic-deformation equations, where the gel is treated as an incompressible, elastic Brinkman medium. This model problem demonstrates how the displacement depends on the particle size and charge, the electrolyte ionic strength, and Young's modulus of the polymer skeleton. The numerics are verified, in part, with an analytical (boundary-layer) theory valid when the Debye length is much smaller than the particle radius. Further, we identify a close connection between the displacement when a colloid is immobilized in a gel and its velocity when dispersed in a Newtonian electrolyte. Finally, we describe an experiment where nanometer-scale displacements might be accurately measured using back-focal-plane interferometry. The purpose of such an experiment is to probe physicochemical and rheological characteristics of hydrogel composites, possibly during gelation

    The importance of pore throats in controlling the permeability of magmatic foams

    Get PDF
    Vesiculation of hydrous melts at 1 atm was studied in situ by synchrotron X-ray tomographic microscopy at the TOMCAT beamline of the Swiss Light Source (Villigen, Switzerland). Water-undersaturated basaltic, andesitic, trachyandesitic, and dacitic glasses were synthesized at high pressures and then laser heated at 1 atm. on the beamline, causing vesiculation. The porosity, bubble number density, size distributions of bubbles, and pore throats, as well as their tortuosity and connectivity, were measured in three-dimensional tomographic reconstructions of sample volumes, which were also used for lattice Boltzmann simulations of viscous permeabilities. Connectivity of bubbles by pore throats varied from ~\u2009100 to 105 mm 123, and for each sample correlated with porosity and permeability. Consideration of the results of this and previous studies of the viscous permeabilities of aphyric and crystal-poor magmatic samples demonstrated that at similar porosities permeability can vary by orders of magnitude, even for similar compositions. Comparison of the permeability relationships from this study with previous models (Degruyter et al., Bull Vulcanol 72:63\u201374, 2010; Burgisser et al., Earth Planet Sci Lett 470:37\u201347, 2017) relating porosity, characteristic pore-throat diameters, and tortuosity demonstrated good agreement. Modifying the Burgisser et al. model by using the maximum pore-throat diameter, instead of the average diameter, as the characteristic diameter reproduced the lattice Boltzmann permeabilities to within 1 order of magnitude. Correlations between average bubble diameters and maximum pore-throat diameters, and between porosity and tortuosity, in our experiments produced relationships that allow application of the modified Burgisser et al. model to predict permeability based only upon the average bubble diameter and porosity. These experimental results are consistent with previous studies suggesting that increasing bubble growth rates result in decreasing permeability of equivalent porosity foams. This effect of growth rate substantially contributes to the multiple orders of magnitude variations in the permeabilities of vesicular magmas at similar porosities
    corecore