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Brinkman screening and the covariance of the fluid velocity in fixed beds
Donald L. Koch and Reghan J. Hill
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The phenomenon of Brinkman screening, whereby the fluid velocity disturbance produced by each
particle in a fixed bed is attenuated by the forces that the fluid exerts on surrounding particles, plays
a crucial role in limiting the range of velocity correlations in porous media and fixed beds. Koch and
Brady @J. Fluid Mech.154, 399 ~1985!# showed theoretically that Brinkman screening leads to a
finite hydrodynamic diffusion coefficient for fluid phase tracers in dilute fixed beds. In this Letter,
we present the results of two simulation techniques~lattice-Boltzmann method and a multipole
method! confirming the screening of the fluid velocity covariance that underlies the Koch and Brady
theory. © 1998 American Institute of Physics.@S1070-6631~98!02612-9#
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The slow decay of fluid velocity correlations with spati
position in a Stokes flow raises subtle issues concerning
existence of velocity covariances and hydrodynamic dif
sion coefficients. The fluid velocity disturbance produced
flow past a single sphere decays like 1/r , wherer is the radial
distance from the particle. Thus, an attempt to calculate
variance ~or covariance! of the fluid velocity in an un-
bounded fixed bed or sedimenting suspension in the abs
of inertia by adding the effects of the particles acting ind
pendently would lead to a volume integral that diverges
large r . The existence of system-size-independent velo
covariances and hydrodynamic diffusion coefficients rema
a controversial issue for sedimenting suspensions.1

However, the understanding of hydrodynamic screen
and dispersion in fixed beds of particles is more firmly
tablished. Brinkman2 suggested that the fluid velocity distu
bance produced by a particle in a fixed bed should be
scribed by equations

¹•^u&150, ~1!

m¹2^u&12¹^p&12 ~m/k! ^u&150, ~2!

that include the drag per unit volume exerted by the fluid
the surrounding particles,m^u&1 /k. Here, u and p are the
fluid velocity and pressure,m is the fluid viscosity,̂ •&1 in-
dicates a conditional ensemble average with the position
one particle fixed,k52a2/(9f) is the permeability,f is the
particle volume fraction, anda is the particle radius. Hinch3

derived this equation rigorously for a dilute fixed bed usi
the method of ensemble averaged equations. Previous
merical simulations have confirmed the predictions of Brin
man’s equations for the conditionally averaged velocity4 and
the pressure drop in the bed.5

The conditionally averaged velocity obtained by solvi
101070-6631/98/10(12)/3035/3/$15.00 303
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Brinkman’s equations~1! and ~2! decays like 1/r at small
radial distances from the fixed particle. However, it
screened and decays like 1/r 3 at distances large compare
with the Brinkman screening length,k1/25a21/2/(3f1/2).
Koch and Brady6 showed that this screening leads to fin
values of the fluid velocity variance, covariance and hyd
dynamic fluid-tracer diffusivity in an unbounded fixed bed

In a recent paper, however, Lowe and Frenkel7 presented
simulation evidence suggesting that finite hydrodynamic d
fusion coefficients do not exist in unbounded random arr
of spheres. They used a lattice-Boltzmann method to co
pute the fluid velocity fields in arrays of 2400 spheres with
volume fraction of 0.45. The trajectories of fluid-phase tra
ers that experienced molecular diffusion and convect
were also determined. The effective diffusivity of these tra
ers can be obtained as the time integral of the two-time
variance of the velocity of a fluid-phase tracer, i.
^u8(t)u8(0)&, where u85u2^u& is the fluctuation of the
fluid velocity relative to the mean, and the angle brack
indicate an unconditional ensemble average. The simulat
indicated that the 11-component of this temporal veloc
covariance decayed like 1/t at long timest. Here the 1-axis is
parallel to the mean velocity in the bed. This slow decay
the velocity covariance would lead to a logarithmic dive
gence of the effective diffusivity.

A slowly decaying temporal velocity covariance cou
arise from one of two physical effects: the spatial covarian
of the velocity could be slowly decaying or some tracer p
ticles could spend an infinite time trapped in some region
the porous medium. Koch and Brady8 showed that a 1/t de-
cay of the temporal velocity covariance could arise fro
tracer particles that come close to the no-slip surfaces of
fixed bed particles. After a time of order (a/U)Pe21/3, how-
5 © 1998 American Institute of Physics
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3036 Phys. Fluids, Vol. 10, No. 12, December 1998 Letters
ever, molecular diffusion would allow the tracers to esca
the boundary layer near the particles and lose their velo
correlation. Here, Pe5Ua/D is the Peclet number,U is the
mean velocity in the medium, andD is the tracers’ molecula
diffusion coefficient. Thus, the theory for boundary-lay
dispersion8 predicts only a transient period of 1/t decay,
whereas the simulations of Lowe and Frenkel7 found this to
be the long-time behavior of the temporal velocity cova
ance. Since the qualitative behavior observed by Lowe
Frenkel was not sensitive to the Peclet number and the
resolution, it seems unlikely that it arose from tracers trap
in boundary layers near particle surfaces.

We may then conjecture that the slow temporal decay
^u8(t)u8(0)& observed in the Lowe and Frenkel simulatio
arose due to a slow decay of the two-position velocity c
relation function^u8(x)u8(0)& with the magnitudex of the
spatial separation of the two positions. Since the tracers
convected through the medium with an average velo
U/(12f), the 1/t decay of the temporal velocity covarianc
may be attributed to a slow 1/x decay of the spatial velocity
covariance. In a dilute fixed bed the spatial velocity cova
ance can be computed from the conditionally averaged
locity using the relationship6

^u8~x!u8~0!&'nE dr ^u8&1~xur !^u8&1~0ur !, ~3!

wheren is the number of particles per unit volume. Evalua
ing the integral in~3! using the solution of Brinkman’s equa
tions ~1!, ~2! leads to the result that the spatial covarian
decays like 1/x3 at separationsx that are much larger than th
Brinkman screening lengthk1/2. There are corrections to~3!
~discussed in the appendix to Ref. 10! that involve the con-
ditionally averaged velocity disturbance with two or mo
particles fixed. These corrections may be expressed in te
of multiple hydrodynamic reflections between the group
particles interacting through a Brinkman medium. Since e
hydrodynamic reflection is subject to screening by the Bri
man medium, these higher order terms also decay like 1x3.
It may be noted that the contributions of higher order hyd
dynamic reflections have been incorporated into calculati
of the drag on a particle in a fixed bed.3,9

In view of the apparent contradiction between the Lo
and Frenkel simulations and the theoretical framework
understanding fluid velocity fluctuations and dispersion
fixed beds, it is desirable to perform further numerical sim
lations to determine the velocity covariance in a fixed b
For simplicity, we will focus on the spatial velocity covar
ance. Since only the 11-component of the temporal velo
covariance was found to decay like 1/t, we will consider the
11-component of the spatial covariance. The mean flow
tend to convect the tracer primarily in the 1-direction. The
fore, we will consider the dependence
^u18(x1,0,0)u18(0,0,0)& on the separationx1 of the two points
in the direction parallel to the mean velocity. To assure t
our conclusions do not result from artifacts of the simulat
method, two simulation techniques will be applied: a mu
pole method and a lattice-Boltzmann method.

First, we consider the velocity covariance in a fixed b
of spheres determined by a fast multipole technique. Brie
Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP l
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this method consists of representing the velocity field
duced by particles in terms of force multipoles located at
center of the particles. The magnitude of these multipole
determined by satisfying the no-slip boundary condition
the surface of each particle, as described in Mo a
Sangani.10 We are interested in arrays with a large numbeN
of particles in each unit cell. In this case, it is advantage
to employ the rapid summation technique based on hie
chical grouping of particles described by Sangani and Mo11

For the relatively low volume fraction (f50.05) considered
in our study, the velocity disturbance caused by each sph
can be approximated as that resulting from the net force
ing upon it. TheO(N) fast multipole algorithm11 involves
expanding the velocity induced by a group of particles in
series of force multipoles at a center of the group. We u
force multipoles ofO(24) (Nsp55 in the notation of Ref.
11! to represent the velocity induced by groups of particl
The velocity covariance was determined by averag
u1(r )u1(r1x) over positionr ~exploiting the translationa
invariance! and averaging over between 10 and 200 reali
tions of the random arrays. The velocity inside the partic
was taken to be zero.

The variance of the velocity in all the simulations w
found to be approximately 0.28. A calculation using the s
lution for Brinkman flow around a sphere in~3! yields a
velocity variance of 0.20. The velocity correlation functio
R(x1)5^u1(x1,0,0)u1(0,0,0)&/^u1

2& is plotted as a function
of position x1 /a in Fig. ~1!. The symbols correspond t
simulations withN varying between 500 and 8000 in bo
cubic and oblong simulation cells. It may be seen that
velocity covariance decays rapidly at large separati

FIG. 1. The velocity correlation function in a random fixed bed of sphe
with a volume fraction of 0.05 is plotted as a function of positionx1 in the
direction parallel to the mean flow. The symbols are results of simulati
using a fast multipole method with 500~circles!, 5000 ~squares! and 8000
~diamonds! particles in cubic unit cells and 1500~upward triangles! and
6000 ~left triangles! particles in oblong cells whose lengths in the flo
direction are twice as long as in the transverse directions. The solid lin
the Brinkman theory, the dotted line is the asymptoteR5118(a/x1)3 and
the dash–dotted line is the slow decay required to give non-Fickian di
sion.
icense or copyright; see http://pof.aip.org/about/rights_and_permissions
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x1 /a.7. The solid line is the theoretical prediction of~3!
with a solution of Brinkman’s equations for the conditiona
averaged velocity. The dashed line is the long distance
ymptoteR5118(a/x1)3. For reference, the dash–dotted lin
indicates the slow decay of the velocity correlation functio
R}a/x1, that would be required to yield the non-Fickia
dispersion observed in the Lowe and Frenkel simulations
is clear that the velocity correlation function decays at a r
that is in good agreement with the Brinkman solution and
approximation~3! used in the Koch and Brady study of hy
drodynamic diffusion in fixed beds.

The lattice-Boltzmann method will be applied to dete
mine the fluid velocity covariance in the two-dimension
flow through a random array of aligned cylinders withf
50.095. The method we employ is described in detail
Ladd12 and has been applied by Koch and Ladd13 to deter-
mine the pressure drop/flow rate relationship in fixed arr
of cylinders. It is well known that two-dimensional Stoke
flows have a longer range than three-dimensional flows
so this example provides a more rigorous test of Brinkm
screening. A theoretical treatment of dispersion in rand
fibrous media has been developed by Koch and Brady.14

A calculation using the two-dimensional analog of~3!
indicates that the spatial velocity covariance in a rand
array of cylinders should be proportional to (a/x1)2 ln(x1 /a)
for distances much larger than the Brinkman screen
length, i.e.,x1@k1/2. To test this prediction, we calculate
the covariance for arrays of 16, 64, 256 and 1024 cylind
whose positions were chosen from a hard-disk distributi
The cylinders had an effective hydrodynamic diameter
1.22 lattice spacings. With this small diameter, the flow
the length scale of the particle diameter is not well resolv
However, our primary interest here is in the long range
havior of the velocity. The Reynolds number was always l

FIG. 2. The velocity correlation function in a random array of cylinde
with a volume fraction of 0.0954 is plotted as a function of the positionx1

in the direction parallel to the mean flow. The symbols are results of latt
Boltzmann simulations with 16~circles!, 64 ~squares!, 256 ~diamonds! and
1024~triangles! particles per unit cell. The solid line is the Brinkman theor
and the dotted line is the asymptoteR5@12.4ln(x1 /a)23.83#(a/x1)2.
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than 1026 and the Mach number was sufficiently small
that compressibility effects were negligible. The covarian
reported for each box size represents an ensemble ave
over 100 configurations of the random medium, except
the largest array where 50 configurations were used.
variance of the velocity obtained from the simulations w
0.65 whereas the variance obtained using the tw
dimensional analog of~3! was 0.41. This deviation may re
sult from the finite particle volume fraction. Nonetheless, t
theory provides very accurate predictions for the spatial
cay of the velocity correlation function as illustrated in Fi
2. For sufficiently large values ofx1, the covariance decay
like ln(x1)/x1

2 as predicted on the basis of~3! and the Brink-
man equations~1! and ~2!.

In summary, we have used lattice-Boltzmann and mu
pole simulation methods to determine the covariance of
fluid velocity in fixed beds of spheres and cylinders. T
covariance of the fluid velocity in a fixed bed decays rapid
with spatial position. This decay is predicted well by theor
based on a solution of Brinkman’s approximation to the co
ditionally averaged equations of motion and the approxim
tion ~3! used in Koch and Brady’s theory for hydrodynam
dispersion. No evidence was found of the long-range vel
ity correlations that would be required to yield non-Fickia
dispersion.
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