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The phenomenon of Brinkman screening, whereby the fluid velocity disturbance produced by each
particle in a fixed bed is attenuated by the forces that the fluid exerts on surrounding particles, plays
a crucial role in limiting the range of velocity correlations in porous media and fixed beds. Koch and
Brady [J. Fluid Mech.154, 399 (1985] showed theoretically that Brinkman screening leads to a
finite hydrodynamic diffusion coefficient for fluid phase tracers in dilute fixed beds. In this Letter,
we present the results of two simulation technigiiestice-Boltzmann method and a multipole
method confirming the screening of the fluid velocity covariance that underlies the Koch and Brady
theory. © 1998 American Institute of Physid$$1070-663(98)02612-9

The slow decay of fluid velocity correlations with spatial Brinkman’s equationg1) and (2) decays like I/ at small
position in a Stokes flow raises subtle issues concerning theadial distances from the fixed particle. However, it is
existence of velocity covariances and hydrodynamic diffu-screened and decays likerd/at distances large compared
sion coefficients. The fluid velocity disturbance produced bywith the Brinkman screening lengthk'/?=a2v%/(3¢?).
flow past a single sphere decays like, Mherer is the radial  Koch and Brad§ showed that this screening leads to finite
distance from the particle. Thus, an attempt to calculate thealues of the fluid velocity variance, covariance and hydro-
variance (or covariancg of the fluid velocity in an un- dynamic fluid-tracer diffusivity in an unbounded fixed bed.
bounded fixed bed or sedimenting suspension in the absence In a recent paper, however, Lowe and Frehkeesented
of inertia by adding the effects of the particles acting inde-simulation evidence suggesting that finite hydrodynamic dif-
pendently would lead to a volume integral that diverges afusion coefficients do not exist in unbounded random arrays
larger. The existence of system-size-independent velocityof spheres. They used a lattice-Boltzmann method to com-
covariances and hydrodynamic diffusion coefficients remaingute the fluid velocity fields in arrays of 2400 spheres with a
a controversial issue for sedimenting suspenstons. volume fraction of 0.45. The trajectories of fluid-phase trac-

However, the understanding of hydrodynamic screeningrs that experienced molecular diffusion and convection
and dispersion in fixed beds of particles is more firmly es-were also determined. The effective diffusivity of these trac-
tablished. Brinkmahsuggested that the fluid velocity distur- ers can be obtained as the time integral of the two-time co-
bance produced by a particle in a fixed bed should be devariance of the velocity of a fluid-phase tracer, i.e.,

scribed by equations (u’(t)u’(0)), whereu'=u—(u) is the fluctuation of the
V-(u);=0, (1) fluid velocity relative to the mean, and the angle brackets
,uV2<u)1—V<p>1— (/K) (U); =0, ) indicate an unconditional ensemble average. The simulations

indicated that the 11-component of this temporal velocity

that include the drag per unit volume exerted by the fluid oncovariance decayed liketldt long timeg. Here the 1-axis is
the surrounding particlegs(u),/k. Here,u and p are the parallel to the mean velocity in the bed. This slow decay of
fluid velocity and pressurey is the fluid viscosity(-), in-  the velocity covariance would lead to a logarithmic diver-
dicates a conditional ensemble average with the position ojence of the effective diffusivity.
one particle fixedk=2a?/(9¢) is the permeability¢ is the A slowly decaying temporal velocity covariance could
particle volume fraction, and is the particle radius. Hinéh  arise from one of two physical effects: the spatial covariance
derived this equation rigorously for a dilute fixed bed usingof the velocity could be slowly decaying or some tracer par-
the method of ensemble averaged equations. Previous ntieles could spend an infinite time trapped in some region of
merical simulations have confirmed the predictions of Brink-the porous medium. Koch and Brddshowed that a 1/de-
man’s equations for the conditionally averaged veldcityd cay of the temporal velocity covariance could arise from
the pressure drop in the béd. tracer particles that come close to the no-slip surfaces of the

The conditionally averaged velocity obtained by solvingfixed bed particles. After a time of ordea/U)Pe ¥ how-
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ever, molecular diffusion would allow the tracers to escape 10—
the boundary layer near the particles and lose their velocity
correlation. Here, PeUa/D is the Peclet numbet) is the
mean velocity in the medium, ardlis the tracers’ molecular
diffusion coefficient. Thus, the theory for boundary-layer
dispersiofi predicts only a transient period oftldecay,
whereas the simulations of Lowe and FredKeund this to
be the long-time behavior of the temporal velocity covari-
ance. Since the qualitative behavior observed by Lowe and
Frenkel was not sensitive to the Peclet number and the grid
resolution, it seems unlikely that it arose from tracers trapped
in boundary layers near particle surfaces. w0 |
We may then conjecture that the slow temporal decay of
(u’(t)u’(0)) observed in the Lowe and Frenkel simulations <
arose due to a slow decay of the two-position velocity cor-
relation function{u’(x)u’(0)) with the magnitudex of the
spatial separation of the two positions. Since the tracers are
convected through the medium with an average velocity 10° o 0
U/(1- ¢), the 1t decay of the temporal velocity covariance z1/a
may be attributed to a slowxXHecay of the spatial velocity FIG. 1. The velocity correlation function in a random fixed bed of spheres
covariance. In a dilute fixed bed the spatial velocity covari-With a volume fraction of 0.05 is plotted as a function of positigrin the
direction parallel to the mean flow. The symbols are results of simulations

ance can be computed from the conditionally averaged Veﬁsing a fast multipole method with 50@@ircles, 5000 (squares and 8000

10

locity using the relationshfp (diamond3 particles in cubic unit cells and 150@pward triangles and
6000 (left triangles particles in oblong cells whose lengths in the flow
(u’(x)u’(O))%nJ dr<u’>1(x|r)<u’>1(o|r), 3) direction are twice as long as in the transverse directions. The solid line is
the Brinkman theory, the dotted line is the asymptate 118(a/x;)® and

. ) . the dash—dotted line is the slow decay required to give non-Fickian diffu-
wheren is the number of particles per unit volume. Evaluat- sjon.

ing the integral in(3) using the solution of Brinkman’s equa-
tions (1), (2) leads to the result that the spatial covariancethis method consists of representing the velocity field in-
decays like 1 at separations that are much larger than the duced by particles in terms of force multipoles located at the
Brinkman screening lengtk’?. There are corrections 1@®) center of the particles. The magnitude of these multipoles is
(discussed in the appendix to Ref.)1Bat involve the con- determined by satisfying the no-slip boundary condition on
ditionally averaged velocity disturbance with two or morethe surface of each particle, as described in Mo and
particles fixed. These corrections may be expressed in ternBangani® We are interested in arrays with a large numier
of multiple hydrodynamic reflections between the group ofof particles in each unit cell. In this case, it is advantageous
particles interacting through a Brinkman medium. Since eactio employ the rapid summation technique based on hierar-
hydrodynamic reflection is subject to screening by the Brink-chical grouping of particles described by Sangani and'#Mo.
man medium, these higher order terms also decay lik& 1/ For the relatively low volume fractiong=0.05) considered
It may be noted that the contributions of higher order hydro-in our study, the velocity disturbance caused by each sphere
dynamic reflections have been incorporated into calculationsan be approximated as that resulting from the net force act-
of the drag on a particle in a fixed béd. ing upon it. TheO(N) fast multipole algorithrt involves
In view of the apparent contradiction between the Loweexpanding the velocity induced by a group of particles in a
and Frenkel simulations and the theoretical framework forseries of force multipoles at a center of the group. We used
understanding fluid velocity fluctuations and dispersion inforce multipoles ofO(2%) (Ngp=5 in the notation of Ref.
fixed beds, it is desirable to perform further numerical simu-11) to represent the velocity induced by groups of particles.
lations to determine the velocity covariance in a fixed bedThe velocity covariance was determined by averaging
For simplicity, we will focus on the spatial velocity covari- u;(r)u;(r+x) over positionr (exploiting the translational
ance. Since only the 11-component of the temporal velocitynvariance and averaging over between 10 and 200 realiza-
covariance was found to decay like We will consider the tions of the random arrays. The velocity inside the particles
11-component of the spatial covariance. The mean flow willwas taken to be zero.
tend to convect the tracer primarily in the 1-direction. There-  The variance of the velocity in all the simulations was
fore, we will consider the dependence of found to be approximately 0.28. A calculation using the so-
(u;1(X1,0,0)u;(0,0,0)) on the separatior; of the two points lution for Brinkman flow around a sphere i{3) yields a
in the direction parallel to the mean velocity. To assure thavelocity variance of 0.20. The velocity correlation function
our conclusions do not result from artifacts of the simulationR(x;) = (u(x;,0,0)u;(0,0,0))/(u?) is plotted as a function
method, two simulation techniques will be applied: a multi-of position x,/a in Fig. (1). The symbols correspond to
pole method and a lattice-Boltzmann method. simulations withN varying between 500 and 8000 in both
First, we consider the velocity covariance in a fixed bedcubic and oblong simulation cells. It may be seen that the
of spheres determined by a fast multipole technique. Brieflyyelocity covariance decays rapidly at large separations
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F—a__ ‘ than 10 ® and the Mach number was sufficiently small so
that compressibility effects were negligible. The covariance
reported for each box size represents an ensemble average
over 100 configurations of the random medium, except for
the largest array where 50 configurations were used. The
variance of the velocity obtained from the simulations was
0.65 whereas the variance obtained using the two-
dimensional analog of3) was 0.41. This deviation may re-
sult from the finite particle volume fraction. Nonetheless, the
theory provides very accurate predictions for the spatial de-
cay of the velocity correlation function as illustrated in Fig.
2. For sufficiently large values of;, the covariance decays
like In(xl)/xf as predicted on the basis (8) and the Brink-
man equationgl) and(2).

In summary, we have used lattice-Boltzmann and multi-
pole simulation methods to determine the covariance of the
fluid velocity in fixed beds of spheres and cylinders. The
o o iy covariance of the fluid velocity in a fixed bed decays rapidly

zi/a with spatial position. This decay is predicted well by theories
FIG. 2. The velocity correlation function in a random array of cylinders based on a solution of Brinkman'’s approximation to the con-
i o i e e o o Syome e o e llonally averaged equatons of moion and the approxima:
II_:oltzemann simL‘J)Iations with 16circles, 64 (squa)r/e}s 256 (diamol:lds;‘o and t'?” 3 _used In KQCh and Brady’s theory for hydrodynamic
1024(triangles particles per unit cell. The solid line is the Brinkman theory, dispersion. No evidence was found of the long-range veloc-
and the dotted line is the asymptdRe=[12.4In, /a)—3.83|(a/x,)>. ity correlations that would be required to yield non-Fickian
dispersion.

10”

x1/a>7. The solid line is the theoretical prediction (8)
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