739 research outputs found

    Evidence for the droplet/scaling picture of spin glasses

    Full text link
    We have studied the Parisi overlap distribution for the three dimensional Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the full Parisi replica symmetry breaking, just as was also observed in recent Monte Carlo simulations on a cubic lattice. However, for lower temperatures our data agree with predictions from the droplet or scaling picture. The failure to see droplet model behaviour in Monte Carlo simulations is due to the fact that all existing simulations have been done at temperatures too close to the transition temperature so that sytem sizes larger than the correlation length have not been achieved.Comment: 4 pages, 6 figure

    Two spin liquid phases in the spatially anisotropic triangular Heisenberg model

    Full text link
    The quantum spin-1/2 antiferromagnetic Heisenberg model on a two dimensional triangular lattice geometry with spatial anisotropy is relevant to describe materials like Cs2CuCl4{\rm Cs_2 Cu Cl_4} and organic compounds like {κ\kappa-(ET)2_2Cu2_2(CN)3_3}. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these intriguing phenomena, quantum Monte Carlo methods are used to study this model system as a function of the anisotropic strength, represented by the ratio J/JJ'/J between the intra-chain nearest neighbor coupling JJ and the inter-chain one JJ'. We have found evidence of two spin liquid regions. The first one is stable for small values of the coupling J'/J \alt 0.65, and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid with a small spin gap and is energetically favored in the region 0.65\alt J'/J \alt 0.8. We have also shown that in both spin liquid phases there is no evidence of broken translation symmetry with dimer or spin-Peirls order or any broken spatial reflection symmetry of the lattice. The various phases are in good agreement with the experimental findings, thus supporting the existence of spin liquid phases in two dimensional quantum spin-1/2 systems.Comment: 35 pages, 24 figures, 3 table

    One-loop approximation for the Heisenberg antiferromagnet

    Full text link
    We use the diagram technique for spin operators to calculate Green's functions and observables of the spin-1/2 quantum Heisenberg antiferromagnet on a square lattice. The first corrections to the self-energy and interaction are taken into account in the chain diagrams. The approximation reproduces main results of Takahashi's modified spin-wave theory [Phys. Rev. B 40, 2494 (1989)] and is applicable in a wider temperature range. The energy per spin calculated in this approximation is in good agreement with the Monte Carlo and small-cluster exact-diagonalization calculations in the range 0 <= T < 1.2J where J is the exchange constant. For the static uniform susceptibility the agreement is good for T < 0.6J and becomes somewhat worse for higher temperatures. Nevertheless the approximation is able to reproduce the maximum in the temperature dependence of the susceptibility near T = 0.9J.Comment: 15 pages, 6 ps figure

    The influence of critical behavior on the spin glass phase

    Full text link
    We have argued in recent papers that Monte Carlo results for the equilibrium properties of the Edwards-Anderson spin glass in three dimensions, which had been interpreted earlier as providing evidence for replica symmetry breaking, can be explained quite simply within the droplet model once finite size effects and proximity to the critical point are taken into account. In this paper, we show that similar considerations are sufficient to explain the Monte Carlo data in four dimensions. In particular, we study the Parisi overlap and the link overlap for the four-dimensional Ising spin glass in the Migdal-Kadanoff approximation. Similar to what is seen in three dimensions, we find that temperatures well below those studied in Monte Carlo simulations have to be reached before the droplet model predictions become apparent. We also show that the double-peak structure of the link overlap distribution function is related to the difference between domain-wall excitations that cross the entire system and droplet excitations that are confined to a smaller region.Comment: 8 pages, 8 figure

    Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet

    Full text link
    We present results of extensive quantum Monte Carlo simulations of the three-dimensional (3D) S=1/2 Heisenberg antiferromagnet. Finite-size scaling of the spin stiffness and the sublattice magnetization gives the critical temperature Tc/J = 0.946 +/- 0.001. The critical behavior is consistent with the classical 3D Heisenberg universality class, as expected. We discuss the general nature of the transition from quantum mechanical to classical (thermal) order parameter fluctuations at a continuous Tc > 0 phase transition.Comment: 5 pages, Revtex, 4 PostScript figures include

    Order-Disorder Transition in a Two-Layer Quantum Antiferromagnet

    Full text link
    We have studied the antiferromagnetic order -- disorder transition occurring at T=0T=0 in a 2-layer quantum Heisenberg antiferromagnet as the inter-plane coupling is increased. Quantum Monte Carlo results for the staggered structure factor in combination with finite-size scaling theory give the critical ratio Jc=2.51±0.02J_c = 2.51 \pm 0.02 between the inter-plane and in-plane coupling constants. The critical behavior is consistent with the 3D classical Heisenberg universality class. Results for the uniform magnetic susceptibility and the correlation length at finite temperature are compared with recent predictions for the 2+1-dimensional nonlinear σ\sigma-model. The susceptibility is found to exhibit quantum critical behavior at temperatures significantly higher than the correlation length.Comment: 11 pages (5 postscript figures available upon request), Revtex 3.

    Finite-Size Scaling of the Ground State Parameters of the Two-Dimensional Heisenberg Model

    Full text link
    The ground state parameters of the two-dimensional S=1/2 antiferromagnetic Heisenberg model are calculated using the Stochastic Series Expansion quantum Monte Carlo method for L*L lattices with L up to 16. The finite-size results for the energy E, the sublattice magnetization M, the long-wavelength susceptibility chi_perp(q=2*pi/L), and the spin stiffness rho_s, are extrapolated to the thermodynamic limit using fits to polynomials in 1/L, constrained by scaling forms previously obtained from renormalization group calculations for the nonlinear sigma model and chiral perturbation theory. The results are fully consistent with the predicted leading finite-size corrections and are of sufficient accuracy for extracting also subleading terms. The subleading energy correction (proportional to 1/L^4) agrees with chiral perturbation theory to within a statistical error of a few percent, thus providing the first numerical confirmation of the finite-size scaling forms to this order. The extrapolated ground state energy per spin, E=-0.669437(5), is the most accurate estimate reported to date. The most accurate Green's function Monte Carlo (GFMC) result is slightly higher than this value, most likely due to a small systematic error originating from ``population control'' bias in GFMC. The other extrapolated parameters are M=0.3070(3), rho_s = 0.175(2), chi_perp = 0.0625(9), and the spinwave velocity c=1.673(7). The statistical errors are comparable with those of the best previous estimates, obtained by fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling forms. Both M and rho_s obtained from the finite-T data are, however, a few error bars higher than the present estimates. It is argued that the T=0 extrapolations performed here are less sensitive to effects of neglectedComment: 16 pages, RevTex, 9 PostScript figure

    Trivial Ground State Structure in the Two-Dimensional Ising Spin Glass

    Full text link
    We study how the ground state of the two-dimensional Ising spin glass with Gaussian interactions in zero magnetic field changes on altering the boundary conditions. The probability that relative spin orientations change in a region far from the boundary goes to zero with the (linear) size of the system L like L^{-lambda}, where lambda = -0.70 +/- 0.08. We argue that lambda is equal to d-d_f where d (=2) is the dimension of the system and d_f is the fractal dimension of a domain wall induced by changes in the boundary conditions. Our value for d_f is consistent with earlier estimates. These results show that, at zero temperature, there is only a single pure state (plus the state with all spins flipped) in agreement with the predictions of the droplet model.Comment: 4 pages, 3 postscript figures; some changes in response to referees' comments, to appear in Phys Rev. B, Rapid Communications, Oct.

    Ising Expansion for the Hubbard Model

    Full text link
    We develop series expansions for the ground state properties of the Hubbard model, by introducing an Ising anisotropy into the Hamiltonian. For the two-dimensional (2D) square lattice half-filled Hubbard model, the ground state energy, local moment, sublattice magnetization, uniform magnetic susceptibility and spin stiffness are calculated as a function of U/tU/t, where UU is the Coulomb constant and tt is the hopping parameter. Magnetic susceptibility data indicate a crossover around U4U\approx 4 between spin density wave antiferromagnetism and Heisenberg antiferromagnetism. Comparisons with Monte Carlo simulations, RPA result and mean field solutions are also made.Comment: 22 pages, 6 Postscript figures, Revte

    Spin Dynamics of La_2CuO_4 and the Two-Dimensional Heisenberg Model

    Full text link
    The spin-lattice relaxation rate 1/T11/T_1 and the spin echo decay rate 1/T2G1/T_{2G} for the 2D Heisenberg model are calculated using quantum Monte Carlo and maximum entropy analytic continuation. The results are compared to recent experiments on La2_2CuO4_4, as well as predictions based on the non-linear σ\sigma-model.Comment: Compressed & uuencoded Postscript file (4 pages with figures
    corecore