992 research outputs found
Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model
The ground state of the quantum rotor model in two dimensions with random
phase frustration is investigated. Extensive Monte Carlo simulations are
performed on the corresponding (2+1)-dimensional classical model under the
entropic sampling scheme. For weak quantum fluctuation, the system is found to
be in a phase glass phase characterized by a finite compressibility and a
finite value for the Edwards-Anderson order parameter, signifying long-ranged
phase rigidity in both spatial and imaginary time directions. Scaling
properties of the model near the transition to the gapped, Mott insulator state
with vanishing compressibility are analyzed. At the quantum critical point, the
dynamic exponent is greater than one. Correlation
length exponents in the spatial and imaginary time directions are given by
and , respectively, both assume values
greater than 0.6723 of the pure case. We speculate that the phase glass phase
is superconducting rather than metallic in the zero current limit.Comment: 14 pages, 4 figures, to appear in JSTA
Simulation Studies on the Stability of the Vortex-Glass Order
The stability of the three-dimensional vortex-glass order in random type-II
superconductors with point disorder is investigated by equilibrium Monte Carlo
simulations based on a lattice XY model with a uniform field threading the
system. It is found that the vortex-glass order, which stably exists in the
absence of screening, is destroyed by the screenng effect, corroborating the
previous finding based on the spatially isotropic gauge-glass model. Estimated
critical exponents, however, deviate considerably from the values reported for
the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J.
Phys. Soc. Jpn. Vol.69 No.1 (2000
Two spin liquid phases in the spatially anisotropic triangular Heisenberg model
The quantum spin-1/2 antiferromagnetic Heisenberg model on a two dimensional
triangular lattice geometry with spatial anisotropy is relevant to describe
materials like and organic compounds like
{-(ET)Cu(CN)}. The strength of the spatial anisotropy can
increase quantum fluctuations and can destabilize the magnetically ordered
state leading to non conventional spin liquid phases. In order to understand
these intriguing phenomena, quantum Monte Carlo methods are used to study this
model system as a function of the anisotropic strength, represented by the
ratio between the intra-chain nearest neighbor coupling and the
inter-chain one . We have found evidence of two spin liquid regions. The
first one is stable for small values of the coupling J'/J \alt 0.65, and
appears gapless and fractionalized, whereas the second one is a more
conventional spin liquid with a small spin gap and is energetically favored in
the region 0.65\alt J'/J \alt 0.8. We have also shown that in both spin
liquid phases there is no evidence of broken translation symmetry with dimer or
spin-Peirls order or any broken spatial reflection symmetry of the lattice. The
various phases are in good agreement with the experimental findings, thus
supporting the existence of spin liquid phases in two dimensional quantum
spin-1/2 systems.Comment: 35 pages, 24 figures, 3 table
On the Use of Finite-Size Scaling to Measure Spin-Glass Exponents
Finite-size scaling (FSS) is a standard technique for measuring scaling
exponents in spin glasses. Here we present a critique of this approach,
emphasizing the need for all length scales to be large compared to microscopic
scales. In particular we show that the replacement, in FSS analyses, of the
correlation length by its asymptotic scaling form can lead to apparently good
scaling collapses with the wrong values of the scaling exponents.Comment: RevTeX, 5 page
500-Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET
Strongly dissymmetric circularly polarised (CP) luminescence from small organic molecules could transform a range of technologies, such as display devices. However, highly dissymmetric emission is usually not possible with small organic molecules, which typically give dissymmetric factors of photoluminescence (gPL) less than 10−2. Here we describe an almost 103-fold chiroptical amplification of a π-extended superhelicene when embedded in an achiral conjugated polymer matrix. This combination increases the |gPL| of the superhelicene from approximately 3×10−4 in solution to 0.15 in a blend film in the solid-state. We propose that the amplification arises not simply through a chiral environment effect, but instead due to electrodynamic coupling between the electric and magnetic transition dipoles of the polymer donor and superhelicene acceptor, and subsequent CP Förster resonance energy transfer. We show that this amplification effect holds across several achiral polymer hosts and thus represents a simple and versatile approach to enhance the g-factors of small organic molecules
Fluctuation Dissipation Ratio in Three-Dimensional Spin Glasses
We present an analysis of the data on aging in the three-dimensional Edwards
Anderson spin glass model with nearest neighbor interactions, which is well
suited for the comparison with a recently developed dynamical mean field
theory. We measure the parameter describing the violation of the
relation among correlation and response function implied by the fluctuation
dissipation theorem.Comment: LaTeX 10 pages + 4 figures (appended as uuencoded compressed
tar-file), THP81-9
Evidence for the droplet/scaling picture of spin glasses
We have studied the Parisi overlap distribution for the three dimensional
Ising spin glass in the Migdal-Kadanoff approximation. For temperatures T
around 0.7Tc and system sizes upto L=32, we found a P(q) as expected for the
full Parisi replica symmetry breaking, just as was also observed in recent
Monte Carlo simulations on a cubic lattice. However, for lower temperatures our
data agree with predictions from the droplet or scaling picture. The failure to
see droplet model behaviour in Monte Carlo simulations is due to the fact that
all existing simulations have been done at temperatures too close to the
transition temperature so that sytem sizes larger than the correlation length
have not been achieved.Comment: 4 pages, 6 figure
Phase Transition in the Two-Dimensional Gauge Glass
The two-dimensional XY gauge glass, which describes disordered
superconducting grains in strong magnetic fields, is investigated, with regard
to the possibility of a glass transition. We compute the glass susceptibility
and the correlation function of the system via extensive numerical simulations
and perform the finite-size scaling analysis. This gives strong evidence for a
finite-temperature transition, which is expected to be of a novel type.Comment: 5pages, 3 figures, revtex, to appear in Phys. Rev.
Spin liquid ground state in a two dimensional non-frustrated spin model
We consider an exchange model describing two isotropic spin-1/2 Heisenberg
antiferromagnets coupled by a quartic term on the square lattice. The model is
relevant for systems with orbital degeneracy and strong electron-vibron
coupling in the large Hubbard repulsion limit, and is known to show a
spin-Peierls-like dimerization in one dimension. In two dimensions we calculate
energy gaps, susceptibilities, and correlation functions with a Green's
Function Monte Carlo. We find a finite spin gap and no evidence of any kind of
order. We conclude that the ground state is, most likely, a spin liquid of
resonating valence bonds.Comment: 4 pages, 4 figures, Revte
- …