408 research outputs found
Detecting event-related recurrences by symbolic analysis: Applications to human language processing
Quasistationarity is ubiquitous in complex dynamical systems. In brain
dynamics there is ample evidence that event-related potentials reflect such
quasistationary states. In order to detect them from time series, several
segmentation techniques have been proposed. In this study we elaborate a recent
approach for detecting quasistationary states as recurrence domains by means of
recurrence analysis and subsequent symbolisation methods. As a result,
recurrence domains are obtained as partition cells that can be further aligned
and unified for different realisations. We address two pertinent problems of
contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc
Using Bars As Signposts of Galaxy Evolution at High and Low Redshifts
An analysis of the NICMOS Deep Field shows that there is no evidence of a
decline in the bar fraction beyond z~0.7, as previously claimed; both
bandshifting and spatial resolution must be taken into account when evaluating
the evolution of the bar fraction. Two main caveats of this study were a lack
of a proper comparison sample at low redshifts and a larger number of galaxies
at high redshifts. We address these caveats using two new studies. For a proper
local sample, we have analyzed 134 spirals in the near-infrared using 2MASS
(main results presented by Menendez-Delmestre in this volume) which serves as
an ideal anchor for the low-redshift Universe. In addition to measuring the
mean bar properties, we find that bar size is correlated with galaxy size and
brightness, but the bar ellipticity is not correlated with these galaxy
properties. The bar length is not correlated with the bar ellipticity. For
larger high redshift samples we analyze the bar fraction from the 2-square
degree COSMOS ACS survey. We find that the bar fraction at z~0.7 is ~50%,
consistent with our earlier finding of no decline in bar fraction at high
redshifts.Comment: In the proceedings of "Penetrating Bars through Masks of Cosmic Dust:
The Hubble Tuning Fork strikes a New Note
Tracking the spatial diffusion of influenza and norovirus using telehealth data: A spatiotemporal analysis of syndromic data
Background: Telehealth systems have a large potential for informing public health authorities in
an early stage of outbreaks of communicable disease. Influenza and norovirus are common viruses
that cause significant respiratory and gastrointestinal disease worldwide. Data about these viruses
are not routinely mapped for surveillance purposes in the UK, so the spatial diffusion of national
outbreaks and epidemics is not known as such incidents occur. We aim to describe the
geographical origin and diffusion of rises in fever and vomiting calls to a national telehealth system,
and consider the usefulness of these findings for influenza and norovirus surveillance.
Methods: Data about fever calls (5- to 14-year-old age group) and vomiting calls (≥ 5-year-old age
group) in school-age children, proxies for influenza and norovirus, respectively, were extracted
from the NHS Direct national telehealth database for the period June 2005 to May 2006. The
SaTScan space-time permutation model was used to retrospectively detect statistically significant
clusters of calls on a week-by-week basis. These syndromic results were validated against existing
laboratory and clinical surveillance data.
Results: We identified two distinct periods of elevated fever calls. The first originated in the
North-West of England during November 2005 and spread in a south-east direction, the second
began in Central England during January 2006 and moved southwards. The timing, geographical
location, and age structure of these rises in fever calls were similar to a national influenza B
outbreak that occurred during winter 2005–2006. We also identified significantly elevated levels of
vomiting calls in South-East England during winter 2005–2006.
Conclusion: Spatiotemporal analyses of telehealth data, specifically fever calls, provided a timely
and unique description of the evolution of a national influenza outbreak. In a similar way the tool
may be useful for tracking norovirus, although the lack of consistent comparison data makes this
more difficult to assess. In interpreting these results, care must be taken to consider other
infectious and non-infectious causes of fever and vomiting. The scan statistic should be considered
for spatial analyses of telehealth data elsewhere and will be used to initiate prospective geographical
surveillance of influenza in England.
Massive-star supernovae as major dust factories
We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe
Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations
The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed
Natural images from the birthplace of the human eye
Here we introduce a database of calibrated natural images publicly available
through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we
acquired about 5000 six-megapixel images of Okavango Delta of Botswana, a
tropical savanna habitat similar to where the human eye is thought to have
evolved. Some sequences of images were captured unsystematically while
following a baboon troop, while others were designed to vary a single parameter
such as aperture, object distance, time of day or position on the horizon.
Images are available in the raw RGB format and in grayscale. Images are also
available in units relevant to the physiology of human cone photoreceptors,
where pixel values represent the expected number of photoisomerizations per
second for cones sensitive to long (L), medium (M) and short (S) wavelengths.
This database is distributed under a Creative Commons Attribution-Noncommercial
Unported license to facilitate research in computer vision, psychophysics of
perception, and visual neuroscience.Comment: Submitted to PLoS ON
Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an α-smooth muscle actin-Cre transgenic mouse
BACKGROUND: Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro. METHODS: We generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence. RESULTS: βgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT. CONCLUSION: We observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis
What explains ethnic organizational violence? Evidence from Eastern Europe and Russia
Why do some ethnopolitical organizations use violence? Research on substate violence often uses the state level of analysis, or only analyzes groups that are already violent. Using a resource mobilization framework drawn from a broad literature, we test hypotheses with new data on hundreds of violent and non-violent ethnopolitical organizations in Eastern Europe and Russia. Our study finds interorganizational competition, state repression and strong group leadership associated with organizational violence. Lack of popularity and holding territory are also associated with violence. We do not find social service provision positively related to violence, which contrasts with research on the Middle East
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
Secular Evolution and the Growth of Pseudobulges in Disk Galaxies
Galaxy evolution is in transition from an early universe dominated by
hierarchical clustering to a future dominated by secular processes. These
result from interactions involving collective phenomena such as bars, oval
disks, spiral structure, and triaxial dark halos. This paper summarizes a
review by Kormendy & Kennicutt (2004) using, in part, illustrations of
different galaxies. In simulations, bars rearrange disk gas into outer rings,
inner rings, and galactic centers, where high gas densities feed starbursts.
Consistent with this picture, many barred and oval galaxies have dense central
concentrations of gas and star formation rates that can build bulge-like
stellar densities on timescales of a few billion years. We conclude that
secular evolution builds dense central components in disk galaxies that look
like classical, merger-built bulges but that were made slowly out of disk gas.
We call these pseudobulges. Many pseudobulges can be recognized because they
have characteristics of disks: (1) flatter shapes than those of classical
bulges, (2) correspondingly large ratios of ordered to random velocities, (3)
small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly
exponential brightness profiles, and (6) starbursts. These structures occur
preferentially in barred and oval galaxies in which secular evolution should be
most rapid. Thus a variety of observational and theoretical results contribute
to a new paradigm of secular evolution that complements hierarchical
clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty;
to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble
Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and
Block, Dordrecht: Kluwer, in press; for a version with full resolution
figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm
- …