8 research outputs found

    WILD HOPPER Prototype for Forest Firefighting

    No full text
    In Europe, fire represents an important issue for a lot of researchers due to economic losses, environmental disasters, and human death. In the last decade, the European parliament sheds light upon this problem by dealing with the community project” Forest Focus”. Thus, researchers and scientific research departments of European companies begin to work on solving and creating different techniques to deal with such a problem, these research centers found that the most attractive and accurate way of solving such a problem was using an Unmanned Aerial Vehicle (UAV). In this paper, the research center at Drone Hopper Company analysis the deficiencies for forest fire fighting systems, in order to start designing its new prototype of a special drone named WILD HOPPER, solving all the shortcomings of similar systems. This paper is the first of a group of research papers that will take place during designing and producing our WILD-HOPPER system

    Systemic Integrated Unmanned Aerial System

    No full text
    Systemic integrated Unmanned Aerial System (UAS), is the process of gathering the subsystems into one fulfilled system. This integration is done in order to improve the system performance, reducing operational costs, and improving the time response of the system. Normally, such systems are integrated using different techniques such as communication processes, and computer networking. In this paper, a new integrated system is implemented by linking functionally computing systems and software applications together in one powerful system

    Fast Multi-UAV Path Planning for Optimal Area Coverage in Aerial Sensing Applications

    No full text
    This paper deals with the problems and the solutions of fast coverage path planning (CPP) for multiple UAVs. Through this research, the problem is solved and analyzed with both a software framework and algorithm. The implemented algorithm generates a back-and-forth path based on the onboard sensor footprint. In addition, three methods are proposed for the individual path assignment: simple bin packing trajectory planner (SIMPLE-BINPAT); bin packing trajectory planner (BINPAT); and Powell optimized bin packing trajectory planner (POWELL-BINPAT). The three methods use heuristic algorithms, linear sum assignment, and minimization techniques to optimize the planning task. Furthermore, this approach is implemented with applicable software to be easily used by first responders such as police and firefighters. In addition, simulation and real-world experiments were performed using UAVs with RGB and thermal cameras. The results show that POWELL-BINPAT generates optimal UAV paths to complete the entire mission in minimum time. Furthermore, the computation time for the trajectory generation task decreases compared to other techniques in the literature. This research is part of a real project funded by the H2020 FASTER Project, with grant ID: 833507

    Thrust Vectoring Control for Heavy UAVs, Employing a Redundant Communication System

    No full text
    Recently, various research studies have been developed to address communication sensors for Unmanned Aerial Systems (UASs). In particular, when pondering control difficulties, communication is a crucial component. To this end, strengthening a control algorithm with redundant linking sensors ensures the overall system works accurately, even if some components fail. This paper proposes a novel approach to integrate several sensors and actuators for a heavy Unmanned Aerial Vehicle (UAV). Additionally, a cutting-edge Robust Thrust Vectoring Control (RTVC) technique is designed to control various communicative modules during a flying mission and converge the attitude system to stability. The results of the study demonstrate that even though RTVC is not frequently utilized, it works as well as cascade PID controllers, particularly for multi-rotors with mounted flaps, and could be perfectly functional in UAVs powered by thermal engines to increase the autonomy since the propellers cannot be used as controller surfaces

    A Proposed System for Multi-UAVs in Remote Sensing Operations

    Get PDF
    This paper proposes the design of the communications, control systems, and navigation algorithms of a multi-UAV system focused on remote sensing operations. A new controller based on a compensator and a nominal controller is designed to dynamically regulate the UAVs’ attitude. The navigation system addresses the multi-region coverage trajectory planning task using a new approach to solve the TSP-CPP problem. The navigation algorithms were tested theoretically, and the combination of the proposed navigation techniques and control strategy was simulated through the Matlab SimScape platform to optimize the controller’s parameters over several iterations. The results reveal the robustness of the controller and optimal performance of the route planner

    Medium-Scale UAVs: A Practical Control System Considering Aerodynamics Analysis

    No full text
    Unmanned aerial vehicles (UAVs) have drawn significant attention from researchers over the last decade due to their wide range of possible uses. Carrying massive payloads concurrent with light UAVs has broadened the aeronautics context, which is feasible using powerful engines; however, it faces several practical control dilemmas. This paper introduces a medium-scale hexacopter, called the Fan Hopper, alimenting Electric Ducted Fan (EDF) engines to investigate the optimum control possibilities for a fully autonomous mission carrying a heavy payload, even of liquid materials, considering calculations of higher orders. Conducting proper aerodynamic simulations, the model is designed, developed, and tested through robotic Gazebo simulation software to ensure proper functionality. Correspondingly, an Ardupilot open source autopilot is employed and enhanced by a model reference adaptive controller (MRAC) for the attitude loop to stabilize the system in case of an EDF failure and adapt the system coefficients when the fluid payload is released. Obtained results reveal less than a 5% error in comparison to desired values. This research reveals that tuned EDFs function dramatically for large payloads; meanwhile, thermal engines could be substituted to maintain much more flight endurance

    Ferritin, blood urea nitrogen, and high chest CT score determines ICU admission in COVID-19 positive UAE patients: A single center retrospective study

    Get PDF
    Coronavirus Disease (COVID-19) was declared a pandemic by WHO in March 2020. Since then, additional novel coronavirus variants have emerged challenging the current healthcare system worldwide. There is an increased need for hospital care, especially intensive care unit (ICU), for the patients severely affected by the disease. Most of the studies analyzed COVID-19 infected patients in the hospitals and established the positive correlation between clinical parameters such as high levels of D-dimer, C-reactive protein, and ferritin to the severity of infection. However, little is known about the course of the ICU admission. The retrospective study carried out at University Hospital Sharjah, UAE presented here reports an integrated analysis of the biochemical and radiological factors among the newly admitted COVID-19 patients to decide on their ICU admission. The descriptive statistical analysis revealed that patients with clinical presentations such as acute respiratory distress syndrome (ARDS) (pCO-RADS 4) in combination with biochemical parameters such as higher levels of blood urea nitrogen (>6.7 mg/dL;66% sensitivity and 75.8% specificity) and ferritin (>290 μg/mL, 71.4% sensitivity and 77.8% specificity) may predict ICU admission with 94.2% accuracy among COVID-19 patients. Collectively, these findings would benefit the hospitals to predict the ICU admission amongst COVID-19 infected patients
    corecore