18 research outputs found

    Optimizing diagnostic imaging data using LI-RADS and the Likert scale in patients with hepatocellular carcinoma

    Get PDF
    Purpose: The study aimed to compare the diagnostic performance of the Liver Imaging Reporting and Data System (LI-RADS), which incorporates fixed criteria, and the Likert scale (LS), which mainly depends on an overall impression in liver lesion diagnosis. Material and methods: Diagnostic data of 110 hepatic nodules in 103 high-risk patients for hepatocellular carcinoma (HCC) were included. Data including diameter, arterial hyperenhancement, washout, and capsule were reviewed by 2 readers using LI-RADS and LS (range, score 1-5). Inter-reader agreement (IRA), intraclass agreement (ICA), and diagnostic performance were determined by Fleiss, Cohen's k, and logistic regression, respectively. Results: There were 53 triphasic enhanced computed tomography (CT) and 50 dynamic magnetic resonance (MR) examinations. Overall, IRA was excellent (k = 0.898). IRA was good for arterial hyperenhancement (k = 0.705), washout (k = 0.763), and capsule (k = 0.771) and excellent for diameter (k = 0.981) and tumour embolus (k = 0.927). Overall, ICA between LI-RADS and LS was fair 0.32; ICA was good for scores of 1 (k = 0.682), fair for scores of 2 (k = 0.36), moderate for scores of 5 (k = 0.52), but no agreement was found for scores of 3 (k = –0.059) and 4 (k = –0.022). LIRADS produced relatively high accuracy (87.3% vs. 80%), relatively low sensitivity (84.3% vs. 98%), and significantly higher specificity (89.83% vs. 64.4%) and positive likelihood ratio (+LR: 8.29 vs. 2.75) compared to LS approach. Conclusions: LI-RADS revealed higher diagnostic accuracy as compared to LS with statistical proof higher specificity and +LR showing its ability to foretell malignancy in high-risk patients. We recommend the practical application of the LI-RADS system in the detection and treatment response monitoring of patients with HCC

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Ovarian and uterine arteries blood flow velocities waveform, hormones and nitric oxide in relation to ovulation in cows superstimulated with equine chorionic gonadotropin and luteolysis induction 10 and 17 days after ovulation

    No full text
    Abstract To investigate the ovarian responses, ovarian and uterine hemodynamics, circulating ovarian hormones, and nitric oxide (NO) with their relations in superstimulated cows. Eight Holstein Friesian dry cows previously synchronized with CIDR underwent rectal Doppler ultrasound scanning and blood sampling after administrating eCG (1500 I.U) on day 10 of the second ovulation (day -5). Cows were treated with 12.5 mg prostaglandin F2α (PGF2α) on days 10 and 17 after ovulation. Estradiol, progesterone, and NO were measured. Results showed that from ≄ 13 follicles, five follicles ovulated from both ovaries. The ovulated follicles increased antrum colored area and colored area % till day -1. The developed corpora lutea (CLs) attained similar diameter, area, colored area, and colored area % from day 2 till day 15. The peak point of velocity (PSV) of uterine arteries decreased while that of ovarian arteries increased from day -4 to day 0. Both ovarian arteries diameter, resistance index (RI), PSV, end velocity (EDV) and systolic/diastolic ratio (S/D) positively correlated (P < 0.0001), but their pulsatility index (PI) negatively correlated (P < 0.0001). The uterine arteries PI, RI, PSV, EDV, time average velocity (TAMV) and S/D negatively correlated (P < 0.0001) but their diameters positively correlated. Estradiol increased but progesterone decreased from day -5 till day 0. After ovulation, P4 reached maximum values on day 9 and started to decrease till day 19.NO showed one peak on day -3 and another one from day 3 to day 9. Conclusions: Blood flow of ovarian arteries is different from uterine arteries and depended on pre- or post-ovulation

    Bilateral clear cell sarcoma of the kidney

    No full text
    Clear cell sarcoma of the kidney (CCSK) accounts for 2–5% of all pediatric renal malignancies, and is known for its propensity to metastasize to bone and other sites. We are reporting two cases with bilateral CCSK that were diagnosed at our institution. One patient initially presented with bilateral renal masses, as well as pulmonary, hepatic and bone metastasis; while other present only with bilateral masses with no evident distant metastasis. Both patients received aggressive neo-adjuvant chemotherapy to decrease tumor size. One patient completed his designated treatment and initially showed complete remission (CR); eventually suffering from relapse. The other patient’s tumor progressed during the course of chemotherapy. Both cases manifested brain dissemination at the time of relapse or progression. This emphasizes the importance of staging stratification in CCSK. This also illustrates CCSK’s ability to metastasize to bone and other sites including the brain (a primary relapse site in our cases)

    Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as Well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression

    No full text
    Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p &lt; 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-&alpha;, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-&alpha;, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects

    Lower Extremity Arterial Disease in Type 2 Diabetes Mellitus: Metformin Inhibits Femoral Artery Ultrastructural Alterations as well as Vascular Tissue Levels of AGEs/ET-1 Axis-Mediated Inflammation and Modulation of Vascular iNOS and eNOS Expression

    No full text
    Lower extremity arterial disease (LEAD) is a major risk factor for amputation in diabetic patients. The advanced glycation end products (AGEs)/endothelin-1 (ET-1)/nitric oxide synthase (NOS) axis-mediated femoral artery injury with and without metformin has not been previously investigated. Type 2 diabetes mellitus (T2DM) was established in rats, with another group of rats treated for two weeks with 200 mg/kg metformin, before being induced with T2DM. The latter cohort were continued on metformin until they were sacrificed at week 12. Femoral artery injury was established in the diabetic group as demonstrated by substantial alterations to the femoral artery ultrastructure, which importantly were ameliorated by metformin. In addition, diabetes caused a significant (p < 0.0001) upregulation of vascular tissue levels of AGEs, ET-1, and iNOS, as well as high blood levels of glycated haemoglobin, TNF-α, and dyslipidemia. All of these parameters were also significantly inhibited by metformin. Moreover, metformin treatment augmented arterial eNOS expression which had been inhibited by diabetes progression. Furthermore, a significant correlation was observed between femoral artery endothelial tissue damage and glycemia, AGEs, ET-1, TNF-α, and dyslipidemia. Thus, in a rat model of T2DM-induced LEAD, an association between femoral artery tissue damage and the AGEs/ET-1/inflammation/NOS/dyslipidemia axis was demonstrated, with metformin treatment demonstrating beneficial vascular protective effects

    Suppression of type 2 diabetes mellitus-induced aortic ultrastructural alterations in rats by insulin:an association of vascular injury biomarkers

    No full text
    Diabetes represents a major public health problem and an estimated 70% of people with diabetes die of cardiovascular complications. The protective effect of insulin treatment against ultrastructural damage to the tunica intima and tunica media of the aorta induced by type 2 diabetes mellitus (T2DM) has not been investigated before using transmission electron microscopy (TEM). Therefore, we induced T2DM in rats using high fat diet and streptozotocin (50 mg/kg) and administered insulin daily by i.v injection for 8 weeks to the treatment group. Whereas, the T2DM control group were left untreated for the duration of the experiment. A comparison was also made between the effect of insulin on aortic tissue and the blood level of biomarkers of vascular injury, inflammation, and oxidative stress. T2DM induced profound ultrastructural damage to the aortic endothelium and vascular smooth muscle cells, which were substantially protected with insulin. Furthermore, insulin returned blood sugar to a control level and significantly (p &lt; .05) inhibited diabetic up-regulation of endothelial and leukocyte intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), endothelial cell adhesion molecules, P-selectin and E-selectin, tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and malondialdehyde (MDA). Furthermore, insulin augmented the blood level of the anti-oxidant enzyme superoxide dismutase (SOD). We conclude that in a rat model of T2DM, insulin treatment substantially reduces aortic injury secondary to T2DM for a period of 8 weeks, possibly due to the inhibition of hyperglycemia, vascular activation, inflammation, and oxidative stress.</p

    Suppression of type 2 diabetes mellitus-induced aortic ultrastructural alterations in rats by insulin:an association of vascular injury biomarkers

    No full text
    Diabetes represents a major public health problem and an estimated 70% of people with diabetes die of cardiovascular complications. The protective effect of insulin treatment against ultrastructural damage to the tunica intima and tunica media of the aorta induced by type 2 diabetes mellitus (T2DM) has not been investigated before using transmission electron microscopy (TEM). Therefore, we induced T2DM in rats using high fat diet and streptozotocin (50 mg/kg) and administered insulin daily by i.v injection for 8 weeks to the treatment group. Whereas, the T2DM control group were left untreated for the duration of the experiment. A comparison was also made between the effect of insulin on aortic tissue and the blood level of biomarkers of vascular injury, inflammation, and oxidative stress. T2DM induced profound ultrastructural damage to the aortic endothelium and vascular smooth muscle cells, which were substantially protected with insulin. Furthermore, insulin returned blood sugar to a control level and significantly (p &lt; .05) inhibited diabetic up-regulation of endothelial and leukocyte intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), endothelial cell adhesion molecules, P-selectin and E-selectin, tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and malondialdehyde (MDA). Furthermore, insulin augmented the blood level of the anti-oxidant enzyme superoxide dismutase (SOD). We conclude that in a rat model of T2DM, insulin treatment substantially reduces aortic injury secondary to T2DM for a period of 8 weeks, possibly due to the inhibition of hyperglycemia, vascular activation, inflammation, and oxidative stress.</p

    Clinical and genetic characterization of ten Egyptian patients with Wolf–Hirschhorn syndrome and review of literature

    No full text
    Abstract Background Wolf–Hirschhorn syndrome (WHS) (OMIM 194190) is a multiple congenital anomalies/intellectual disability syndrome. It is caused by partial loss of genetic material from the distal portion of the short arm of chromosome. Methods We studied the phenotype–genotype correlation. Results We present the clinical manifestations and cytogenetic results of 10 unrelated Egyptian patients with 4p deletions. Karyotyping, FISH and MLPA was performed for screening for microdeletion syndromes. Array CGH was done for two patients. All patients exhibited the cardinal clinical manifestation of WHS. FISH proved deletion of the specific WHS locus in all patients. MLPA detected microdeletion of the specific locus in two patients with normal karyotypes, while array CGH, performed for two patients, has delineated the extent of the deleted segments and the involved genes. LETM1, the main candidate gene for the seizure phenotype, was found deleted in the two patients tested by array CGH; nevertheless, one of them did not manifest seizures. The study emphasized the previous. Conclusion WHS is a contiguous gene syndrome resulting from hemizygosity of the terminal 2 Mb of 4p16.3 region. The Branchial fistula, detected in one of our patients is a new finding that, to our knowledge, was not reported
    corecore