3,188 research outputs found
Modular Autoencoders for Ensemble Feature Extraction
We introduce the concept of a Modular Autoencoder (MAE), capable of learning
a set of diverse but complementary representations from unlabelled data, that
can later be used for supervised tasks. The learning of the representations is
controlled by a trade off parameter, and we show on six benchmark datasets the
optimum lies between two extremes: a set of smaller, independent autoencoders
each with low capacity, versus a single monolithic encoding, outperforming an
appropriate baseline. In the present paper we explore the special case of
linear MAE, and derive an SVD-based algorithm which converges several orders of
magnitude faster than gradient descent.Comment: 18 pages, 8 figures, to appear in a special issue of The Journal Of
Machine Learning Research (vol.44, Dec 2015
Classification with unknown class-conditional label noise on non-compact feature spaces
We investigate the problem of classification in the presence of unknown
class-conditional label noise in which the labels observed by the learner have
been corrupted with some unknown class dependent probability. In order to
obtain finite sample rates, previous approaches to classification with unknown
class-conditional label noise have required that the regression function is
close to its extrema on sets of large measure. We shall consider this problem
in the setting of non-compact metric spaces, where the regression function need
not attain its extrema.
In this setting we determine the minimax optimal learning rates (up to
logarithmic factors). The rate displays interesting threshold behaviour: When
the regression function approaches its extrema at a sufficient rate, the
optimal learning rates are of the same order as those obtained in the
label-noise free setting. If the regression function approaches its extrema
more gradually then classification performance necessarily degrades. In
addition, we present an adaptive algorithm which attains these rates without
prior knowledge of either the distributional parameters or the local density.
This identifies for the first time a scenario in which finite sample rates are
achievable in the label noise setting, but they differ from the optimal rates
without label noise
Trajectories of Women’s Ordination in History
This paper seeks to highlight the Biblical trajectories relating to women and Christian leadership which contrasted with the ancient cultural understandings of women and leadership, compare them with the trajectories of the early Christian tradition, and then attempt an answer to the complex question of the causes for the shaping of the trajectories in the Christian tradition
- …