49 research outputs found

    Metastatic Tumor Evolution and Organoid Modeling Implicate TGFBR2 as a Cancer Driver in Diffuse Gastric Cancer

    Get PDF
    Background: Gastric cancer is the second-leading cause of global cancer deaths, with metastatic disease representing the primary cause of mortality. To identify candidate drivers involved in oncogenesis and tumor evolution, we conduct an extensive genome sequencing analysis of metastatic progression in a diffuse gastric cancer. This involves a comparison between a primary tumor from a hereditary diffuse gastric cancer syndrome proband and its recurrence as an ovarian metastasis. Results: Both the primary tumor and ovarian metastasis have common biallelic loss-of-function of both the CDH1 and TP53 tumor suppressors, indicating a common genetic origin. While the primary tumor exhibits amplification of the Fibroblast growth factor receptor 2 (FGFR2) gene, the metastasis notably lacks FGFR2 amplification but rather possesses unique biallelic alterations of Transforming growth factor-beta receptor 2 (TGFBR2), indicating the divergent in vivo evolution of a TGFBR2-mutant metastatic clonal population in this patient. As TGFBR2 mutations have not previously been functionally validated in gastric cancer, we modeled the metastatic potential of TGFBR2 loss in a murine three-dimensional primary gastric organoid culture. The Tgfbr2 shRNA knockdown within Cdh1-/-; Tp53-/- organoids generates invasion in vitro and robust metastatic tumorigenicity in vivo, confirming Tgfbr2 metastasis suppressor activity. Conclusions: We document the metastatic differentiation and genetic heterogeneity of diffuse gastric cancer and reveal the potential metastatic role of TGFBR2 loss-of-function. In support of this study, we apply a murine primary organoid culture method capable of recapitulating in vivo metastatic gastric cancer. Overall, we describe an integrated approach to identify and functionally validate putative cancer drivers involved in metastasi

    An International Consensus to Standardize Integration of Histopathology in Ulcerative Colitis Clinical Trials

    Get PDF
    Background & Aims: Histopathology is an emerging treatment target in ulcerative colitis (UC) clinical trials. Our aim was to provide guidance on standardizing biopsy collection protocols, identifying optimal evaluative indices, and defining thresholds for histologic response and remission after treatment. Methods: An international, interdisciplinary expert panel of 19 gastroenterologists and gastrointestinal pathologists was assembled. A modified RAND/University of California, Los Angeles appropriateness methodology was used to address relevant issues. A total of 138 statements were derived from a systematic review of the literature and expert opinion. Each statement was anonymously rated as appropriate, uncertain, or inappropriate using a 9-point scale. Survey results were reviewed and discussed before a second round of voting. Results: Histologic measurements collected using a uniform biopsy strategy are important for assessing disease activity and determining therapeutic efficacy in UC clinical trials. Multiple biopsy strategies were deemed acceptable, including segmental biopsies collected according to the endoscopic appearance. Biopsies should be scored for architectural change, lamina propria chronic inflammation, basal plasmacytosis, lamina propria and epithelial neutrophils, epithelial damage, and erosions/ulcerations. The Geboes score, Robarts Histopathology Index, and Nancy Index were considered appropriate for assessing histologic activity; use of the modified Riley score and Harpaz Index were uncertain. Histologic activity at baseline should be required for enrollment, recognizing this carries operational implications. Achievement of histologic improvement or remission was considered an appropriate and realistic therapeutic target. Current histologic indices require validation for pediatric populations. Conclusions: These recommendations provide a framework for standardized implementation of histopathology in UC trials. Additional work is required to address operational considerations and areas of uncertainty

    Diagnostic accuracy of cyst fluid amphiregulin in pancreatic cysts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate tests to diagnose adenocarcinoma and high-grade dysplasia among mucinous pancreatic cysts are clinically needed. This study evaluated the diagnostic utility of amphiregulin (AREG) as a pancreatic cyst fluid biomarker to differentiate non-mucinous, benign mucinous, and malignant mucinous cysts.</p> <p>Methods</p> <p>A single-center retrospective study to evaluate AREG levels in pancreatic cyst fluid by ELISA from 33 patients with a histological gold standard was performed.</p> <p>Results</p> <p>Among the cyst fluid samples, the median (IQR) AREG levels for non-mucinous (n = 6), benign mucinous (n = 15), and cancerous cysts (n = 15) were 85 pg/ml (47-168), 63 pg/ml (30-847), and 986 pg/ml (417-3160), respectively. A significant difference between benign mucinous and malignant mucinous cysts was observed (<it>p </it>= 0.025). AREG levels greater than 300 pg/ml possessed a diagnostic accuracy for cancer or high-grade dysplasia of 78% (sensitivity 83%, specificity 73%).</p> <p>Conclusion</p> <p>Cyst fluid AREG levels are significantly higher in cancerous and high-grade dysplastic cysts compared to benign mucinous cysts. Thus AREG exhibits potential clinical utility in the evaluation of pancreatic cysts.</p

    Computational prediction and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes

    Get PDF
    <p/> <p>Background</p> <p>Pancreatic cancer, composed principally of pancreatic adenocarcinoma (PaC), is the fourth leading cause of cancer death in the United States. PaC-associated diabetes may be a marker of early disease. We sought to identify molecules associated with PaC and PaC with diabetes (PaC-DM) using a novel translational bioinformatics approach. We identified fatty acid binding protein-1 (FABP-1) as one of several candidates. The primary aim of this pilot study was to experimentally validate the predicted association between FABP-1 with PaC and PaC with diabetes.</p> <p>Methods</p> <p>We searched public microarray measurements for genes that were specifically highly expressed in PaC. We then filtered for proteins with known involvement in diabetes. Validation of FABP-1 was performed via antibody immunohistochemistry on formalin-fixed paraffin embedded pancreatic tissue microarrays (FFPE TMA). FFPE TMA were constructed using148 cores of pancreatic tissue from 134 patients collected between 1995 and 2002 from patients who underwent pancreatic surgery. Primary analysis was performed on 21 normal and 60 pancreatic adenocarcinoma samples, stratified for diabetes. Clinical data on samples was obtained via retrospective chart review. Serial sections were cut per standard protocol. Antibody staining was graded by an experienced pathologist on a scale of 0-3. Bivariate and multivariate analyses were conducted to assess FABP-1 staining and clinical characteristics.</p> <p>Results</p> <p>Normal samples were significantly more likely to come from younger patients. PaC samples were significantly more likely to stain for FABP-1, when FABP-1 staining was considered a binary variable. Compared to normals, there was significantly increased staining in diabetic PaC samples (p = 0.004) and there was a trend towards increased staining in the non-diabetic PaC group (p = 0.07). In logistic regression modeling, FABP-1 staining was significantly associated with diagnosis of PaC (OR 8.6 95% CI 1.1-68, p = 0.04), though age was a confounder.</p> <p>Conclusions</p> <p>Compared to normal controls, there was a significant positive association between FABP-1 staining and PaC on FFPE-TMA, strengthened by the presence of diabetes. Further studies with closely phenotyped patient samples are required to understand the true relationship between FABP-1, PaC and PaC-associated diabetes. A translational bioinformatics approach has potential to identify novel disease associations and potential biomarkers in gastroenterology.</p

    Utilizing Deep Learning to Analyze Whole Slide Images of Colonic Biopsies for Associations Between Eosinophil Density and Clinicopathologic Features in Active Ulcerative Colitis

    No full text
    Background: Eosinophils have been implicated in the pathogenesis of ulcerative colitis and have been associated with disease course and therapeutic response. However, associations between eosinophil density, histologic activity, and clinical features have not been rigorously studied. Methods: A deep learning algorithm was trained to identify eosinophils in colonic biopsies and validated against pathologists' interpretations. The algorithm was applied to sigmoid colon biopsies from a cross-sectional cohort of 88 ulcerative colitis patients with histologically active disease as measured by the Geboes score and Robarts histopathology index (RHI). Associations between eosinophil density, histologic activity, and clinical features were determined. Results: The eosinophil deep learning algorithm demonstrated almost perfect agreement with manual eosinophil counts determined by 4 pathologists (interclass correlation coefficients: 0.805-0.917). Eosinophil density varied widely across patients (median 113.5 cells per mm2, interquartile range 108.9). There was no association between eosinophil density and RHI (P=0.5). Significant differences in eosinophil density were seen between patients with Montreal E3 vs E2 disease (146.2 cells per mm2 vs 88.2 cells per mm2, P=0.005). Patients on corticosteroids had significantly lower eosinophil density (62.9 cells per mm2 vs 124.1 cells per mm2, P=0.006). No association between eosinophil density and biologic use was observed (P=0.5). Conclusions: We developed a deep learning algorithm to quantify eosinophils in colonic biopsies. Eosinophil density did not correlate with histologic activity but did correlate with disease extent and corticosteroid use. Future studies applying this algorithm in larger cohorts with longitudinal follow-up are needed to further elucidate the role of eosinophils in ulcerative colitis

    Transforming growth factor beta induces sensory neuronal hyperexcitability, and contributes to pancreatic pain and hyperalgesia in rats with chronic pancreatitis

    No full text
    Abstract Background Transforming growth factor beta (TGFβ) is upregulated in chronic inflammation, where it plays a key role in wound healing and promoting fibrosis. However, little is known about the peripheral effects of TGFβ on nociception. Methods We tested the in vitro effects of TGFβ1 on the excitability of dorsal root ganglia (DRG) neurons and the function of potassium (K) channels. We also studied the effects of TGFβ1 infusion on pain responses to noxious electrical stimulation in healthy rats as well as the effects of neutralization of TGFβ1 on evoked pain behaviors in a rat model of chronic pancreatitis. Results Exposure to TGFβ1 in vitro increased sensory neuronal excitability, decreased voltage-gated A-type K+ currents (IA) and downregulated expression of the Kv1.4 (KCNA4) gene. Further TGFβ1 infusion into the naïve rat pancreas in vivo induces hyperalgesia and conversely, neutralization of TGFβ1 attenuates hyperalgesia only in rats with experimental chronic pancreatitis. Paradoxically, TGFβ1 neutralization in naïve rats results in pancreatic hyperalgesia. Conclusions TGFβ1 is an important and complex modulator of sensory neuronal function in chronic inflammation, providing a link between fibrosis and nociception and is a potentially novel target for the treatment of persistent pain associated with chronic pancreatitis.</p
    corecore