11,286 research outputs found
Ionized Gas in Damped Lyman Alpha Protogalaxies: II. Comparison Between Models and the Kinematic Data
We test semi-analytic models for galaxy formation with accurate kinematic
data of damped Lyman alpha protogalaxies (DLAs) presented in the companion
paper I. The models envisage centrifugally supported exponential disks at the
centers of dark matter halos which are filled with ionized gas undergoing
radial infall to the disks. The halo masses are drawn from cross-section
weighted mass distributions predicted by CDM cosmogonies, or by the null
hypothesis (TF model) that the dark matter mass distribution has not evolved
since z ~ 3. In our models, C IV absorption lines detected in DLAs arise in
infalling ionized clouds while the low-ion absorption lines arise from neutral
gas in the disks. Using Monte Carlo methods we find: (a) The CDM models are
incompatible with the low-ion statistics at more than 99% confidence whereas
some TF models cannot be excluded at more than 88% confidence. (b) Both CDM and
TF models agree with the observed distribution of C IV velocity widths. (c) The
CDM models generate differences between the mean velocities of C IV and low ion
profiles in agreement with the data, while the TF model produces differences in
the means that are too large. (d) Both CDM and TF models produce ratios of C IV
to low-ion velocity widths that are too large. (e) Both CDM and TF models
generate C IV versus low-ion cross-correlation functions incompatible with the
data.
While it is possible to select model parameters resulting in consistency with
the data, the disk-halo configuration assumed in both cosmogonies still does
not produce significant overlap in velocity space between C IV low-ion velocity
profiles. We conjecture that including angular momentum of the infalling clouds
will increase the overlap between C IV and low-ion profiles.Comment: 18 pages, 12 Figures, Accepted for publication in the Dec. 20 issue
of the Astrophysical Journa
Meson Synchrotron Emission from Central Engines of Gamma-Ray Bursts with Strong Magnetic Fields
Gamma-ray bursts (GRBs) are presumed to be powered by still unknown central
engines for the timescales in the range a few s. We propose that the
GRB central engines would be a viable site for strong meson synchrotron
emission if they were the compact astrophysical objects such as neutron stars
or rotating black holes with extremely strong magnetic fields and if protons or heavy nuclei were accelerated to ultra-relativistic
energies of order . We show that the charged scalar
mesons like and heavy vector mesons like , which have several
decay modes onto , could be emitted with high intensity a thousand
times larger than photons through strong couplings to ultra-relativistic
nucleons. These meson synchrotron emission processes eventually produce a burst
of very high-energy cosmic neutrinos with . These
neutrinos are to be detected during the early time duration of short GRBs.Comment: 12 pages, 4 figures. Accepted for publication in the Astrophysical
Journal Letter
Radiation Front Sweeping the Ambient Medium of Gamma-Ray Bursts
Gamma-ray bursts (GRBs) are emitted by relativistic ejecta from powerful
cosmic explosions. Their light curves suggest that the gamma-ray emission
occurs at early stages of the ejecta expansion, well before it decelerates in
the ambient medium. If so, the launched gamma-ray front must overtake the
ejecta and sweep the ambient medium outward. As a result a gap is opened
between the ejecta and the medium that surfs the radiation front ahead.
Effectively, the ejecta moves in a cavity until it reaches a radius
R_{gap}=10^{16}E_{54}^{1/2} cm where E is the isotropic energy of the GRB. At
R=R_{gap} the gap is closed, a blast wave forms and collects the medium swept
by radiation. Further development of the blast wave is strongly affected by the
leading radiation front: the front plays the role of a precursor where the
medium is loaded with e+- pairs and preaccelerated just ahead of the blast. It
impacts the emission from the blast at R < R_{load}=5R_{gap} (the early
afterglow). A spectacular observational effect results: GRB afterglows should
start in optical/UV and evolve fast (< min) to a normal X-ray afterglow. The
early optical emission observed in GRB 990123 may be explained in this way. The
impact of the front is especially strong if the ambient medium is a wind from a
massive progenitor of the GRB. In this case three phenomena are predicted: (1)
The ejecta decelerates at R<R_{load} producing a lot of soft radiation. (2) The
light curve of soft emission peaks at
t_{peak}=40(1+z)E_{54}^{1/2}(Gamma_{ej}/100)^{-2} s where Gamma_{ej} is the
Lorentz factor of the ejecta. Given measured redshift z and t_{peak}, one finds
Gamma_{ej}. (3) The GRB acquires a spectral break at 5 - 50 MeV because harder
photons are absorbed by radiation scattered in the wind.Comment: 20 pages, accepted to Ap
Topological regluing of rational functions
Regluing is a topological operation that helps to construct topological
models for rational functions on the boundaries of certain hyperbolic
components. It also has a holomorphic interpretation, with the flavor of
infinite dimensional Thurston--Teichm\"uller theory. We will discuss a
topological theory of regluing, and trace a direction in which a holomorphic
theory can develop.Comment: 38 page
A Model for the Moving `Wisps' in the Crab Nebula
I propose that the moving `wisps' near the center of the Crab Nebula result
from nonlinear Kelvin-Helmholtz instabilities in the equatorial plane of the
shocked pulsar wind. Recent observations suggest that the wisps trace out
circular wavefronts in this plane, expanding radially at speeds approximately
less than c/3. Instabilities could develop if there is sufficient velocity
shear between a faster-moving equatorial zone and a slower moving shocked
pulsar wind at higher latitudes. The development of shear could be related to
the existence of a neutral sheet -- with weak magnetic field -- in the
equatorial zone, and could also be related to a recent suggestion by Begelman
that the magnetic field in the Crab pulsar wind is much stronger than had been
thought. I show that plausible conditions could lead to the growth of
instabilities at the radii and speeds observed, and that their nonlinear
development could lead to the appearance of sharp wisplike features.Comment: 7 pages; 3 postscript figures; LaTex, uses emulateapj.sty; to Appear
in the Astrophysical Journal, Feb. 20, 1999, Vol. 51
Imprint of Inhomogeneous Reionization on the Power Spectrum of Galaxy Surveys at High Redshifts
We consider the effects of inhomogeneous reionization on the distribution of
galaxies at high redshifts. Modulation of the formation process of the ionizing
sources by large scale density modes makes reionization inhomogeneous and
introduces a spread to the reionization times of different regions with the
same size. After sources photo-ionize and heat these regions to a temperature
\ga 10^4K at different times, their temperatures evolve as the ionized
intergalactic medium (IGM) expands. The varying IGM temperature makes the
minimum mass of galaxies spatially non-uniform with a fluctuation amplitude
that increases towards small scales. These scale-dependent fluctuations modify
the shape of the power spectrum of low-mass galaxies at high redshifts in a way
that depends on the history of reionization. The resulting distortion of the
primordial power spectrum is significantly larger than changes associated with
uncertainties in the inflationary parameters, such as the spectral index of the
scalar power spectrum or the running of the spectral index. Future surveys of
high-redshift galaxies will offer a new probe of the thermal history of the IGM
but might have a more limited scope in constraining inflation.Comment: 8 pages, 5 figures, replaced to match version accepted by Ap
Internal Migration and Regional Population Dynamics in Europe: Sweden Case Study
This paper describes the structure of internal migration and population change in Sweden in recent decades, focussing on the years 1988 and 1998 to capture change in the last decade.
Up to the 1970s and again in the early 1990s natural increase play an important role in regional population dynamics. In the late 1990s growing international migration, decreasing fertility and strong net internal migration into large cities increased the importance of migration at both national and local levels. In 1988 migration flows contributed to a pattern of relatively even deconcentration of population. Urban centres and surrounding communities experienced mixed patterns of growth. The pattern observed in 1998 was entirely different. It showed a strong movement up the urban hierarchy. Rural and remote areas, especially those in Norrland, depopulated. In 1998 migrants moved from low-density areas to high-density. High density areas had much higher population gains than low density over the 1988–1998 period.
There is a difference in migration pattern between the north of the country, which mostly loses population and the central and southern parts, which mostly gain people. The pattern of migration of the Swedish population is, to large extent, related to the level of unemployment. Low unemployment areas attract migrants; high unemployment areas lose them. However, the level of unemployment cannot be considered in isolation, because the level of unemployment is correlated with the level of urbanisation and with type of regional economy. Areas with an educated population have a very strong attraction for migrants. A high level of education is indispensable for high level services, including tertiary education, and for high technology enterprises, which attract migrants. Young people migrate to metropolitan areas and university towns out of the other types of municipality. Medium sized municipalities attract families. Outflows from industrial regions and Inner Norrland municipalities are visible in all age groups. Metropolitan areas are gaining popularity among families. The elderly population migrates to university and medium size municipalities
Some Late-time Asymptotics of General Scalar-Tensor Cosmologies
We study the asymptotic behaviour of isotropic and homogeneous universes in
general scalar-tensor gravity theories containing a p=-rho vacuum fluid stress
and other sub-dominant matter stresses. It is shown that in order for there to
be approach to a de Sitter spacetime at large 4-volumes the coupling function,
omega(phi), which defines the scalar-tensor theory, must diverge faster than
|phi_infty-phi|^(-1+epsilon) for all epsilon>0 as phi rightarrow phi_infty 0
for large values of the time. Thus, for a given theory, specified by
omega(phi), there must exist some phi_infty in (0,infty) such that omega ->
infty and omega' / omega^(2+epsilon) -> 0 as phi -> 0 phi_infty in order for
cosmological solutions of the theory to approach de Sitter expansion at late
times. We also classify the possible asymptotic time variations of the
gravitation `constant' G(t) at late times in scalar-tensor theories. We show
that (unlike in general relativity) the problem of a profusion of ``Boltzmann
brains'' at late cosmological times can be avoided in scalar-tensor theories,
including Brans-Dicke theory, in which phi -> infty and omega ~ o(\phi^(1/2))
at asymptotically late times.Comment: 14 page
- …