6,911 research outputs found

    Measuring the eccentricity of the Earth orbit with a nail and a piece of plywood

    Full text link
    I describe how to obtain a rather good experimental determination of the eccentricity of the Earth orbit, as well as the obliquity of the Earth rotation axis, by measuring, over the course of a year, the elevation of the Sun as a function of time during a day. With a very simple "instrument" consisting of an elementary sundial, first-year students can carry out an appealing measurement programme, learn important concepts in experimental physics, see concrete applications of kinematics and changes of reference frames, and benefit from a hands-on introduction to astronomy.Comment: 12 pages, 6 figure

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    Neutrinos from Early-Phase, Pulsar-Driven Supernovae

    Get PDF
    Neutron stars, just after their formation, are surrounded by expanding, dense, and very hot envelopes which radiate thermal photons. Iron nuclei can be accelerated in the wind zones of such energetic pulsars to very high energies. These nuclei photo-disintegrate and their products lose energy efficiently in collisions with thermal photons and with the matter of the envelope, mainly via pion production. When the temperature of the radiation inside the envelope of the supernova drops below ∌3×106\sim 3\times 10^6 K, these pions decay before losing energy and produce high energy neutrinos. We estimate the flux of muon neutrinos emitted during such an early phase of the pulsar - supernova envelope interaction. We find that a 1 km2^2 neutrino detector should be able to detect neutrinos above 1 TeV within about one year after the explosion from a supernova in our Galaxy. This result holds if these pulsars are able to efficiently accelerate nuclei to energies ∌1020\sim 10^{20} eV, as postulated recently by some authors for models of Galactic acceleration of the extremely high energy cosmic rays (EHE CRs).Comment: 16 pages, 3 figures, revised version submitted to Ap

    Parent-only interventions in the treatment of childhood obesity: a systematic review of randomized controlled trials

    Get PDF
    Background An effective and cost-effective treatment is required for the treatment of childhood obesity. Comparing parent-only interventions with interventions including the child may help determine this. Methods A systematic review of published and ongoing studies until 2013, using electronic database and manual searches. Inclusion criteria: randomized controlled trials, overweight/obese children aged 5-12 years, parent-only intervention compared with an intervention that included the child, 6 months or more follow-up. Outcomes included measures of overweight. Results Ten papers from 6 completed studies, and 2 protocols for ongoing studies, were identified. Parent-only groups are either more effective than or similarly effective as child-only or parent-child interventions, in the change in degree of overweight. Most studies were at unclear risk of bias for randomization, allocation concealment and blinding of outcome assessors. Two trials were at high risk of bias for incomplete outcome data. Four studies showed higher dropout from parent-only interventions. One study examined programme costs and found parent-only interventions to be cheaper. Conclusions Parent-only interventions appear to be as effective as parent-child interventions in the treatment of childhood overweight/obesity, and may be less expensive. Reasons for higher attrition rates in parent-only interventions need further investigatio

    Constraining Alternate Models of Black Holes: Type I X-ray Bursts on Accreting Fermion-Fermion and Boson-Fermion Stars

    Full text link
    The existence of black holes remains open to doubt until other conceivable options are excluded. With this motivation, we consider a model of a compact star in which most of the mass consists of dark particles of some kind, and a small fraction of the mass is in the form of ordinary nucleonic gas. The gas does not interact with the dark matter other than via gravity, but collects at the center as a separate fermionic fluid component. Depending on whether the dark mass is made of fermions or bosons, the objects may be called fermion-fermion stars or boson-fermion stars, respectively. For appropriate choices of the mass of the dark matter particles, these objects are viable models of black hole candidates in X-ray binaries. We consider models with a dark mass of 10 solar masses and a range of gas mass from 10^{-6} to nearly one solar mass, and analyse the bursting properties of the models when they accrete gas. We show that all the models would experience thermonuclear Type I X-ray bursts at appropriate mass accretion rates. Since no Type I bursts have been reported from black hole candidates, the models are ruled out. The case for identifying black hole candidates in X-ray binaries as true black holes is thus strengthened.Comment: 29 pages, 7 figures, to appear in The Astrophysical Journa

    A Model for the Moving `Wisps' in the Crab Nebula

    Get PDF
    I propose that the moving `wisps' near the center of the Crab Nebula result from nonlinear Kelvin-Helmholtz instabilities in the equatorial plane of the shocked pulsar wind. Recent observations suggest that the wisps trace out circular wavefronts in this plane, expanding radially at speeds approximately less than c/3. Instabilities could develop if there is sufficient velocity shear between a faster-moving equatorial zone and a slower moving shocked pulsar wind at higher latitudes. The development of shear could be related to the existence of a neutral sheet -- with weak magnetic field -- in the equatorial zone, and could also be related to a recent suggestion by Begelman that the magnetic field in the Crab pulsar wind is much stronger than had been thought. I show that plausible conditions could lead to the growth of instabilities at the radii and speeds observed, and that their nonlinear development could lead to the appearance of sharp wisplike features.Comment: 7 pages; 3 postscript figures; LaTex, uses emulateapj.sty; to Appear in the Astrophysical Journal, Feb. 20, 1999, Vol. 51

    A Signature of Cosmic Strings Wakes in the CMB Polarization

    Full text link
    We calculate a signature of cosmic strings in the polarization of the cosmic microwave background (CMB). We find that ionization in the wakes behind moving strings gives rise to extra polarization in a set of rectangular patches in the sky whose length distribution is scale-invariant. The length of an individual patch is set by the co-moving Hubble radius at the time the string is perturbing the CMB. The polarization signal is largest for string wakes produced at the earliest post-recombination time, and for an alignment in which the photons cross the wake close to the time the wake is created. The maximal amplitude of the polarization relative to the temperature quadrupole is set by the overdensity of free electrons inside a wake which depends on the ionization fraction ff inside the wake. The signal can be as high as 0.06ÎŒK0.06 {\rm \mu K} in degree scale polarization for a string at high redshift (near recombination) and a string tension ÎŒ\mu given by GÎŒ=10−7G \mu = 10^{-7}.Comment: 8 pages, 3 figure

    Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts

    Get PDF
    The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrisic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~ 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter

    Will Jets Identify the Progenitors of Type Ia Supernovae?

    Full text link
    We use the fact that a Type Ia supernova has been serendipitously discovered near the jet of the active galaxy 3C 78 to examine the question of whether jets can enhance accretion onto white dwarfs. One interesting outcome of such a jet-induced accretion process is an enhanced rate of novae in the vicinity of jets. We present results of observations of the jet in M87 which appear to have indeed discovered 11 novae in close proximity to the jet. We show that a confirmation of the relation between jets and novae and Type Ia supernovae can finally identify the elusive progenitors of Type Ia supernovae.Comment: 10 pages, 3 figure

    An implicit method for radiative transfer with the diffusion approximation in SPH

    Full text link
    An implicit method for radiative transfer in SPH is described. The diffusion approximation is used, and the hydrodynamic calculations are performed by a fully three--dimensional SPH code. Instead of the energy equation of state for an ideal gas, various energy states and the dissociation of hydrogen molecules are considered in the energy calculation for a more realistic temperature and pressure determination. In order to test the implicit code, we have performed non--isothermal collapse simulations of a centrally condensed cloud, and have compared our results with those of finite difference calculations performed by MB93. The results produced by the two completely different numerical methods agree well with each other.Comment: 25 pages, 9 figure
    • 

    corecore