12,717 research outputs found

    Formation of Supermassive Black Holes by Direct Collapse in Pregalactic Halos

    Full text link
    We describe a mechanism by which supermassive black holes can form directly in the nuclei of protogalaxies, without the need for seed black holes left over from early star formation. Self-gravitating gas in dark matter halos can lose angular momentum rapidly via runaway, global dynamical instabilities, the so-called "bars within bars" mechanism. This leads to the rapid buildup of a dense, self-gravitating core supported by gas pressure - surrounded by a radiation pressure-dominated envelope - which gradually contracts and is compressed further by subsequent infall. These conditions lead to such high temperatures in the central region that the gas cools catastrophically by thermal neutrino emission, leading to the formation and rapid growth of a central black hole. We estimate the initial mass and growth rate of the black hole for typical conditions in metal-free halos with T_vir ~ 10^4 K, which are the most likely to be susceptible to runaway infall. The initial black hole should have a mass of <~20 solar masses, but in principle could grow at a super-Eddington rate until it reaches ~ 10^4-10^6 solar masses. Rapid growth may be limited by feedback from the accretion process and/or disruption of the mass supply by star formation or halo mergers. Even if super-Eddington growth stops at \~10^3-10^4 solar masses, this process would give black holes ample time to attain quasar-size masses by a redshift of 6, and could also provide the seeds for all supermassive black holes seen in the present universe.Comment: 11 pages, 2 figures, Monthly Notices of the Royal Astronomical Society, in press. Minor revision

    Limits from rapid TeV variability of Mrk 421

    Full text link
    The extreme variability event in the TeV emission of Mrk 421, recently reported by the Whipple team, imposes the tightest limits on the typical size of the TeV emitting regions in Active Galactic Nuclei (AGN). We examine the consequences that this imposes on the bulk Lorentz factor of the emitting plasma and on the radiation fields present in the central region of this Active Nucleus. No strong evidence is found for extreme Lorentz factors. However, energetics arguments suggest that any accretion in Mrk 421 has to take place at small rates, compatible with an advection-dominated regime.Comment: 5 pages (Latex MNRAS style), revised version, submitted to MNRA

    Implications of very rapid TeV variability in blazars

    Full text link
    We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole's magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.Comment: 5 pages, no figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    The matter content of the jet in M87: evidence for an electron-positron jet

    Get PDF
    Recent observations have allowed the geometry and kinematics of the M87 jet to be tightly constrained. We combine these constraints with historical Very Long Baseline Interferometry (VLBI) results and the theory of synchrotron self-absorbed radio cores in order to investigate the physical properties of the jet. Our results strongly suggest the jet to be dominated by an electron-positron (pair) plasma. Although our conservative constraints cannot conclusively dismiss an electron-proton plasma, the viability of this solution is extremely vulnerable to further tightening of VLBI surface brightness limits. The arguments presented, coupled with future high-resolution multi-frequency VLBI studies of the jet core, will be able to firmly distinguish these two possibilities.Comment: 8 pages, 1 ps figure. Revised and accepted for publication in MNRA

    Fitting Pulsar Wind Tori. II. Error Analysis and Applications

    Full text link
    We have applied the torus fitting procedure described in Ng & Romani (2004) to PWNe observations in the Chandra data archive. This study provides quantitative measurement of the PWN geometry and we characterize the uncertainties in the fits, with statistical errors coming from the fit uncertainties and systematic errors estimated by varying the assumed fitting model. The symmetry axis Κ\Psi of the PWN are generally well determined, and highly model-independent. We often derive a robust value for the spin inclination ζ\zeta. We briefly discuss the utility of these results in comparison with new radio and high energy pulse measurementsComment: 15 pages, 3 figures, ApJ in pres

    Steep Slopes and Preferred Breaks in GRB Spectra: the Role of Photospheres and Comptonization

    Get PDF
    The role of a photospheric component and of pair breakdown is examined in the internal shock model of gamma-ray bursts. We discuss some of the mechanisms by which they would produce anomalously steep low energy slopes, X-ray excesses and preferred energy breaks. Sub-relativistic comptonization should dominate in high comoving luminosity bursts with high baryon load, while synchrotron radiation dominates the power law component in bursts which have lower comoving luminosity or have moderate to low baryon loads. A photosphere leading to steep low energy spectral slopes should be prominent in the lowest baryon loadComment: ApJ'00, in press; minor revs. 10/5/99; (uses aaspp4.sty), 15 pages, 3 figure

    The Lyman Break Galaxies: their Progenitors and Descendants

    Get PDF
    We study the evolution of Lyman Break Galaxies (LBGs) from z=5 to z=0 by tracing the merger trees of galaxies in a large-scale hydrodynamic simulation based on a Lambda cold dark matter model. In particular, we emphasize on the range of properties of the sample selected by the rest-frame V band luminosity, in accordance with recent near-IR observations. The predicted rest-frame V band luminosity function agrees well with the observed one when dust extinction is taken into account. The stellar content and the star formation histories of LBGs are also studied. We find that the LBGs intrinsically brighter than Mv=-21.0 at z=3 have stellar masses of at least 10^9\Msun, with a median of 10^{10}h^{-1}\Msun. The brightest LBGs (Mv<-23) at z=3 merge into clusters/groups of galaxies at z=0, as suggested from clustering studies of LBGs. Roughly one half of the galaxies with -23<Mv<-22 at z=3 fall into groups/clusters, and the other half become typical L* galaxies at z=0 with stellar mass of ~10^{11}\Msun. Descendants of LBGs at the present epoch have formed roughly 30% of their stellar mass by z=3, and the half of their current stellar population is 10 Gyr old, favoring the scenario that LBGs are the precursors of the present day spheroids. We find that the most luminous LBGs have experienced a starburst within 500 Myr prior to z=3, but also have formed stars continuously over a period of 1 Gyr prior to z=3 when all the star formation in progenitors is coadded. We also study the evolution of the mean stellar metallicity distribution of galaxies, and find that the entire distribution shifts to lower metallicity at higher redshift. The observed sub-solar metallicity of LBGs at z=3 is naturally predicted in our simulation.Comment: 29 pages, including 11 figures, ApJ in press. One reference adde

    X-ray emission from the Ultramassive Black Hole candidate NGC1277: implications and speculation on its origin

    Full text link
    We study the X-ray emission from NGC1277, a galaxy in the core of the Perseus cluster, for which van den Bosch et al. have recently claimed the presence of an UltraMassive Black Hole (UMBH) of mass 1.7 times 10^10 Msun, unless the IMF of the stars in the stellar bulge is extremely bottom heavy. The X-rays originate in a power-law component of luminosity 1.3 times 10^40 erg/s embedded in a 1 keV thermal minicorona which has a half-light radius of about 360 pc, typical of many early-type galaxies in rich clusters of galaxies. If Bondi accretion operated onto the UMBH from the minicorona with a radiative efficiency of 10 per cent, then the object would appear as a quasar with luminosity 10^46 erg/s, a factor of almost 10^6 times higher than observed. The accretion flow must be highly radiatively inefficient, similar to past results on M87 and NGC3115. The UMBH in NGC1277 is definitely not undergoing any significant growth at the present epoch. We note that there are 3 UMBH candidates in the Perseus cluster and that the inferred present mean mass density in UMBH could be 10^5 Msun/Mpc^3, which is 20 to 30 per cent of the estimated mean mass density of all black holes. We speculate on the implied growth of UMBH and their hosts, and discuss the possibiity that extreme AGN feedback could make all UMBH host galaxies have low stellar masses at redshifts around 3. Only those which end up at the centres of groups and clusters later accrete large stellar envelopes and become Brightest Cluster Galaxies. NGC1277 and the other Perseus core UMBH, NGC1270, have not however been able to gather more stars or gas owing to their rapid orbital motion in the cluster core.Comment: 5 pages, 4 figures, MNRAS in pres

    The Minimum Description Length Principle and Model Selection in Spectropolarimetry

    Get PDF
    It is shown that the two-part Minimum Description Length Principle can be used to discriminate among different models that can explain a given observed dataset. The description length is chosen to be the sum of the lengths of the message needed to encode the model plus the message needed to encode the data when the model is applied to the dataset. It is verified that the proposed principle can efficiently distinguish the model that correctly fits the observations while avoiding over-fitting. The capabilities of this criterion are shown in two simple problems for the analysis of observed spectropolarimetric signals. The first is the de-noising of observations with the aid of the PCA technique. The second is the selection of the optimal number of parameters in LTE inversions. We propose this criterion as a quantitative approach for distinguising the most plausible model among a set of proposed models. This quantity is very easy to implement as an additional output on the existing inversion codes.Comment: Accepted for publication in the Astrophysical Journa
    • 

    corecore