591 research outputs found

    Nitrogenase: A Nucleotide-Dependent Molecular Switch

    Full text link

    Crystallization of Azotobacter vinelandii Nitrogenase Iron Protein

    Get PDF
    The iron protein from Azotobacter vinelandii nitrogenase has been crystallized in the reduced form. The needle-shaped crystals are in space group P2_12_12 (a = 94.6 Å, b = 179.9 Å, c = 74.1 Å) and diffract to at least 3.5-Å resolution. Five or six Fe-protein monomers are present in the asymmetric unit

    Proteomic Analysis of Hippocampal Dentate Granule Cells in Frontotemporal Lobar Degeneration: Application of Laser Capture Technology

    Get PDF
    Frontotemporal lobar degeneration (FTLD) is the most common cause of dementia with pre-senile onset, accounting for as many as 20% of cases. A common subset of FTLD cases is characterized by the presence of ubiquitinated inclusions in vulnerable neurons (FTLD-U). While the pathophysiological mechanisms underlying neurodegeneration in FTLD-U have not yet been elucidated, the presence of inclusions in this disease indicates enhanced aggregation of one or several proteins. Moreover, these inclusions suggest altered expression, processing, or degradation of proteins during FTLD-U pathogenesis. Thus, one approach to understanding disease mechanisms is to delineate the molecular changes in protein composition in FTLD-U brain. Using a combined approach consisting of laser capture microdissection (LCM) and high-resolution liquid chromatography-tandem mass spectrometry (LC–MS/MS), we identified 1252 proteins in hippocampal dentate granule cells excised from three post-mortem FTLD-U and three unaffected control cases processed in parallel. Additionally, we employed a labeling-free quantification technique to compare the abundance of the identified proteins between FTLD-U and control cases. Quantification revealed 54 proteins with selective enrichment in FTLD-U, including TAR–DNA binding protein 43 (TDP-43), a recently identified component of ubiquitinated inclusions. Moreover, 19 proteins were selectively decreased in FTLD-U. Subsequent immunohistochemical analysis of TDP-43 and three additional protein candidates suggests that our proteomic profiling of FTLD-U dentate granule cells reveals both inclusion-associated proteins and non-aggregated disease-specific proteins. Application of LCM is a valuable tool in the molecular analysis of complex tissues, and its application in the proteomic characterization of neurodegenerative disorders such as FTLD-U may be used to identify proteins altered in disease

    Restudy on Dark Matter Time-Evolution in the Littlest Higgs model with T-parity

    Full text link
    Following previous study, in the Littlest Higgs model (LHM), the heavy photon is supposed to be a possible dark matter candidate and its relic abundance of the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg time-evolution equation. The effects of the T-parity violation is also considered. Our calculations show that when Higgs mass MHM_H taken to be 300 GeV and don't consider T-parity violation, only two narrow ranges 133<MAH<135133<M_{A_{H}}<135 GeV and 167<MAH<169167<M_{A_{H}}<169 GeV are tolerable with the current astrophysical observation and if 135<MAH<167135<M_{A_{H}}<167 GeV, there must at least exist another species of heavy particle contributing to the cold dark matter. As long as the T-parity can be violated, the heavy photon can decay into regular standard model particles and would affect the dark matter abundance in the universe, we discuss the constraint on the T-parity violation parameter based on the present data. Direct detection prospects are also discussed in some detail.Comment: 13 pages, 11 figures include

    Familial Parkinson's Disease-associated L166P Mutation Disrupts DJ-1 Protein Folding and Function

    Get PDF
    Mutations in DJ-1, a protein of unknown function, were recently identified as the cause for an autosomal recessive, early onset form of familial Parkinson's disease. Here we report that DJ-1 is a dimeric protein that exhibits protease activity but no chaperone activity. The protease activity was abolished by mutation of Cys-106 to Ala, suggesting that DJ-1 functions as a cysteine protease. Our studies revealed that the Parkinson's disease-linked L166P mutation impaired the intrinsic folding propensity of DJ-1 protein, resulting in a spontaneously unfolded structure that was incapable of forming a homodimer with itself or a heterodimer with wild-type DJ-1. Correlating with the disruption of DJ-1 structure, the L166P mutation abolished the catalytic function of DJ-1. Furthermore, as a result of protein misfolding, the L166P mutant DJ-1 was selectively polyubiquitinated and rapidly degraded by the proteasome. Together these findings provide insights into the molecular mechanism by which loss-of-function mutations in DJ-1 lead to Parkinson's disease

    White Matter Integrity and Processing Speed in Sickle Cell Anemia

    Get PDF
    Objective The purpose of this retrospective cross-sectional study was to investigate whether changes in white matter integrity are related to slower processing speed in sickle cell anemia. Methods Thirty-seven patients with silent cerebral infarction, 46 patients with normal MRI, and 32 sibling controls (age range 8–37 years) underwent cognitive assessment using the Wechsler scales and 3-tesla MRI. Tract-based spatial statistics analyses of diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) parameters were performed. Results Processing speed index (PSI) was lower in patients than controls by 9.34 points (95% confi- dence interval: 4.635–14.855, p = 0.0003). Full Scale IQ was lower by 4.14 scaled points (95% confidence interval: −1.066 to 9.551, p = 0.1), but this difference was abolished when PSI was included as a covariate (p = 0.18). There were no differences in cognition between patients with and without silent cerebral infarction, and both groups had lower PSI than controls (both p < 0.001). In patients, arterial oxygen content, socioeconomic status, age, and male sex were identified as predictors of PSI, and correlations were found between PSI and DTI scalars (fractional anisotropy r = 0.614, p < 0.00001; r = −0.457, p < 0.00001; mean diffusivity r = −0.341, p = 0.0016; radial diffusivity r = −0.457, p < 0.00001) and NODDI parameters (intracellular volume fraction r = 0.364, p = 0.0007) in widespread regions. Conclusion Our results extend previous reports of impairment that is independent of presence of infarction and may worsen with age. We identify processing speed as a vulnerable domain, with deficits potentially mediating difficulties across other domains, and provide evidence that reduced processing speed is related to the integrity of normal-appearing white matter using microstructure parameters from DTI and NODDI

    Quantification of Silent Cerebral Infarction on High-Resolution FLAIR and Cognition in Sickle Cell Anemia

    Get PDF
    Research in sickle cell anemia (SCA) has used, with limited race-matched control data, binary categorization of patients according to the presence or absence of silent cerebral infarction (SCI). SCI have primarily been identified using low-resolution MRI, with radiological definitions varying in lesion length and the requirement for abnormality on both fluid attenuated inversion recovery (FLAIR) and T1-weighted images. We aimed to assess the effect of published SCI definitions on global, regional, and lobar lesion metrics and their value in predicting cognition. One hundred and six patients with SCA and 48 controls aged 8-30 years underwent 3T MRI with a high-resolution FLAIR sequence and Wechsler cognitive assessment. Prevalence, number, and volume of lesions were calculated using a semi-automated pipeline for SCI defined as: (1) Liberal: any length (L-SCI); (2) Traditional: >3 mm in greatest dimension (T-SCI); (3) Restrictive; >3 mm in greatest dimension with a corresponding T1-weighted hypo-intensity (R-SCI). Globally, as hypothesized, there were large effects of SCI definition on lesion metrics in patients and controls, with prevalence varying from 24-42% in patients, and 4-23% in controls. However, contrary to hypotheses, there was no effect of any global metric on cognition. Regionally, there was a consistent distribution of SCI in frontal and parietal deep and juxta-cortical regions across definitions and metrics in patients, but no consistent distribution in controls. Effects of regional SCI metrics on cognitive performance were of small magnitude; some were paradoxical. These findings expose the challenges associated with the widespread use of SCI presence as a biomarker of white-matter injury and cognitive dysfunction in cross-sectional high-resolution MRI studies in patients with SCA. The findings indicate that with high-resolution MRI: (1) radiological definitions have a large effect on resulting lesion groups, numbers, and volumes; (2) there is a non-negligible prevalence of lesions in young healthy controls; and (3) at the group-level, there is no cross-sectional association between global lesion metrics and general cognitive impairment irrespective of lesion definition and metric. With high-resolution multi-modal MRI, the dichotomy of presence or absence of SCI does not appear to be a sensitive biomarker for the detection of functionally significant pathology; the search for appropriate endpoints for clinical treatment trials should continue
    corecore