3 research outputs found

    Assessment of <i>Helicobacter pylori </i>cytotoxin-associated Gene A (Cag A) protein and its association with ferritin and vitamin B12 deficiencies among adult healthy asymptomatic residents in Sharjah, United Arab Emirates

    Get PDF
    Introduction: The United Arab Emirates (UAE) serves as an effective epidemiological site for assessing Helicobacter pylori (H. pylori) infection due to its diverse population. However, comprehensive studies on the prevalence of H. pylori in the UAE are notably scarce. In depth prevalence studies are needed as a preventive measure against gastric cancer and other emerging extra gastric diseases associated with H. pylori infection. Aim: This study aimed to assess H. pylori infection and its virulent oncoprotein, the Cytotoxin-Associated Gene (Cag A) and its association with ferritin and vitamin B12 deficiencies. Methods: The study was conducted on 1094 healthy asymptomatic volunteers residents in the Sharjah Emirate, UAE. Enzyme-linked immunosorbent assay (ELISA) was performed to assess H. pylori infection using H. pylori antibodies (IgG), and detection of CagA protein using Cag A antibody (IgG) in the human serum. Ferritin and vitamin B12 serum levels were assessed and correlated to H. pylori infection. Results: This study focuses mainly on the assessment of H. pylori and its virulent factor CagA, in relation to vitamin B12 and ferritin deficiencies. Remarkably, 49.6 % of the participants were detected positive for H. pylori, with over half of these cases involving CagA positive strains. Notably, among Emirati participants, 76.11 % of those with H. pylori infection were CagA positive. Statistical analysis revealed a significant correlation between H. pylori, CagA level, and ferritin/vitamin B12 deficiencies. Conclusion: These findings emphasize the importance of timely detection and eradication of H. pylori not only as a preventive strategy against gastric cancer but also as an effective strategy to rescue the adverse effects from ferritin and vitamin B12 deficiencies, thereby improving the overall health outcomes of individuals affected by H. pylori infection.</p

    Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori.

    No full text
    Urease enzyme is a known therapeutic drug target for treatment of Helicobacter pylori infection due to its role in settlement and growth in gastric mucosa. In this study, we designed a new series of sulfonates and sulfamates bearing imidazo[2,1-b]thiazole scaffold that exhibit a potent inhibitory activity of urease enzyme. The most potent compound 2c inhibited urease with an IC50 value of 2.94 ± 0.05 μM, which is 8-fold more potent than the thiourea positive control (IC50 = 22.3 ± 0.031 μM). Enzyme kinetics study showed that compound 2c is a competitive inhibitor of urease. Molecular modeling studies of the most potent inhibitors in the urease active site suggested multiple binding interactions with different amino acid residues. Phenotypic screening of the developed compounds against H. pylori delivered molecules of that possess high potency (1a, 1d, 1h, 2d, and 2f) in comparison to the positive control, acetohydroxamic acid. Additional studies to investigate the selectivity of these compounds against AGS gastric cell line and E. coli were performed. Permeability of the most promising derivatives (1a, 1d, 1h, 2d, and 2f) in Caco-2 cell line, was investigated. As a result, compound 1d presented itself as a lead drug candidate since it exhibited a promising inhibition against urease with an IC50 of 3.09 ± 0.07 μM, MIC value against H. pylori of 0.031 ± 0.011 mM, and SI against AGS of 6.05. Interestingly, compound 1d did not show activity against urease-negative E. coli and exhibited a low permeability in Caco-2 cells which supports the potential use of this compound for GIT infection without systemic effect
    corecore