15 research outputs found

    Progress in Vaccine Development for HCV Infection

    Get PDF
    Hepatitis C virus (HCV) is a blood-transmitted disease that spreads among 3% of the world’s population causing seriously increasing mortality rates. The HCV prevalence in Egypt in October 2008 was 14.7% and declined to 6.3% in the survey carried out in October 2015. Nowadays, the new direct-acting antivirals (DAAs) show amazing results especially with regard to HCV genotype 1, but there is still a great necessity to produce a vaccine to avoid this viral infection. Additionally, neutralizing anti-HCV antibodies could be utilized in combination with DAAs empowering their effect. A powerful candidate HCV vaccine should create comprehensively cross-receptive T cells CD4 and CD8 and effectively neutralizing antibodies to successfully clear the virus. The current clinical trials for HCV vaccines comprise synthetic peptides, DNA-based vaccines, or recombinant protein vaccines. Several preclinical vaccine studies are under research including cell culture-derived HCV (HCVcc), HCV-like particles, and recombinant adenoviral vaccines. This mini-review will discuss the prevalence of HCV worldwide and in Egypt. We will present the recent progress in basic research and preclinical and clinical studies for HCV vaccine. Finally, it will present the phenomena of spontaneous clearance of HCV without treatment as a model for study of HCV vaccine development

    Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2

    Get PDF
    Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively). On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%). Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection

    Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats

    Get PDF
    The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430–446), p37(a.a 517–531) and p38 (a.a 412–419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315–323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection

    Statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor)-based therapy for hepatitis C virus (HCV) infection-related diseases in the era of direct-acting antiviral agents [version 3; referees: 2 approved]

    No full text
    Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs (e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness

    Harnessing immunoinformatics for developing a multiple-epitope peptide-based vaccination approach against SARS-CoV-2 spike protein

    No full text
    COVID-19 has spread to over 200 countries with variable severity and mortality rates. Computational analysis is a valuable tool for developing B-cell and T-cell epitope-based vaccines. In this study, by harnessing immunoinformatics tools, we designed a multiple-epitope vaccine to protect against COVID-19. The candidate epitopes were designed from highly conserved regions of the SARS-CoV-2 spike (S) glycoprotein. The consensus amino acids sequence of ten SARS-CoV-2 variants including Gamma, Beta, Epsilon, Delta, Alpha, Kappa, Iota, Lambda, Mu, and Omicron was involved. Applying the multiple sequence alignment plugin and the antigenic prediction tools of Geneious prime 2021, ten predicted variants were identified and consensus S-protein sequences were used to predict the antigenic part. According to ElliPro analysis of S-protein B-cell prediction, we explored 22 continuous linear epitopes with high scores ranging from 0.879 to 0.522. First, we reported five promising epitopes: BE1 1115-1192, BE2 481-563, BE3 287-313, BE4 62-75, and BE5 112-131 with antigenicity scores of 0.879, 0.86, 0.813, 0.779, and 0.765, respectively, while only nine discontinuous epitopes scored between 0.971 and 0.511. Next, we identified 194 Major Histocompatibility Complex (MHC) ‐ I and 156 MHC ‐ II epitopes with antigenic characteristics. These spike-specific peptide-epitopes with characteristically high immunogenic and antigenic scores have the potential as a SARS-CoV-2 multiple-epitope peptide-based vaccination strategy. Nevertheless, further experimental investigations are needed to test for the vaccine efficacy and efficiency

    A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice

    No full text
    International audienceBACKGROUND:Although DAAs hold promise to significantly reduce rates of chronic HCV infections, its eradication still requires development of an effective vaccine. Prolonged T cell responses and cross neutralizing antibodies are ideal for vaccination against the infection. We aimed to design and synthesize a 6 multi epitope peptide vaccine candidate and provide evidence for production of extended cellular and neutralizing Abs in mice.METHODS:Six peptides derived from conserved epitopes in E1, E2 (n = 2),NS4B, NS5A and NS5B were designed, synthesized in a multiple antigenic peptide (MAP) form and administered w/o adjuvant to BALB/c mice as HCVp6-MAP at doses ranging from 800 ng to 16 μg. Humoral responses to structural epitopes were assayed by ELISA at different times after injection. ELISpot assay was used to evaluate IFN ɣ producing CD4+/ CD8+ T- lymphocytes at extended durations i.e. > 20 weeks. Viral neutralization by mice sera was tested for genotypes 2a (JFH1) and a chimeric 2a/4a virus (ED43/JFH1) in HCVcc culture.RESULTS:HCVp6-MAP confers potent viral neutralization and specific cellular responses at > 1600 ng/ animal for at least 20 weeks.CONCLUSION:We report on a promising anti HCV vaccine for future studies on permissive hosts and in clinical trials

    Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2

    No full text
    Abstract Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively). On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%). Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection.</p
    corecore