22 research outputs found

    CLASS Survey Description: Coronal Line Needles in the SDSS Haystack

    Full text link
    Coronal lines are a powerful, yet poorly understood, tool to identify and characterize Active Galactic Nuclei (AGNs). There have been few large scale surveys of coronal lines in the general galaxy population in the literature so far. Using a novel pre-selection technique with a flux-to-RMS ratio FF, followed by Markov-Chain Monte Carlo (MCMC) fitting, we searched for the full suite of 20 coronal lines in the optical spectra of almost 1 million galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 8. We present a catalog of the emission line parameters for the resulting 258 galaxies with detections. The Coronal Line Activity Spectroscopic Survey (CLASS) includes line properties, host galaxy properties, and selection criteria for all galaxies in which at least one line is detected. This comprehensive study reveals that a significant fraction of coronal line activity is missed in past surveys based on a more limited set of coronal lines; \sim60% of our sample do not display the more widely surveyed [Fe X] λ\lambda6374. In addition, we discover a strong correlation between coronal line and WISE W2 luminosities, suggesting that the mid-infrared flux can be used to predict coronal line fluxes. For each line we also provide a confidence level that the line is present, generated by a novel neural network, trained on fully simulated data. We find that after training the network to detect individual lines using 100,000 simulated spectra, we achieve an overall true positive rate of 75.49% and a false positive rate of only 3.96%.Comment: 27 pages, 16 figures, 4 table

    The Messy Nature of Fiber Spectra: Star-Quasar Pairs Masquerading as Dual Type 1 AGNs

    Full text link
    Theoretical studies predict that the most significant growth of supermassive black holes occurs in late-stage mergers, coinciding with the manifestation of dual active galactic nuclei (AGNs), and both major and minor mergers are expected to be important for dual AGN growth. In fact, dual AGNs in minor mergers should be signposts for efficient minor merger-induced SMBH growth for both the more and less massive progenitor. We identified two candidate dual AGNs residing in apparent minor mergers with mass ratios of \sim1:7 and \sim1:30. SDSS fiber spectra show broad and narrow emission lines in the primary nuclei of each merger while only a narrow [O III] emission line and a broad and prominent Hα\alpha/[N II] complex is observed in the secondary nuclei. The FWHMs of the broad Hα\alpha lines in the primary and secondary nuclei are inconsistent in each merger, suggesting that each nucleus in each merger hosts a Type 1 AGN. However, spatially-resolved LBT optical spectroscopy reveal rest-frame stellar absorption features, indicating the secondary sources are foreground stars and that the previously detected broad lines are likely the result of fiber spillover effects induced by the atmospheric seeing at the time of the SDSS observations. This study demonstrates for the first time that optical spectroscopic searches for Type 1/Type 1 pairs similarly suffer from fiber spillover effects as has been observed previously for Seyfert 2 dual AGN candidates. The presence of foreground stars may not have been clear if an instrument with more limited wavelength range or limited sensitivity had been used.Comment: 15 pages including appendix and references, 6 figures, 1 table. Accepted for publication in Ap

    Nuclear Activity in the Low Metallicity Dwarf Galaxy SDSS J0944-0038: A Glimpse into the Primordial Universe

    Full text link
    Local low metallicity dwarf galaxies are relics of the early universe and hold clues into the origins of supermassive black holes (SMBHs). In recent work, coronal lines have been used to unveil a population of candidate accreting black holes in dwarf galaxies with gas phase metallicities and stellar masses well below the host galaxies of any previously known AGNs. Using MUSE/VLT observations, we report the detection of [Fe X] λ\lambda6374 coronal line emission and a broad Hα\alpha line in the nucleus of SDSS J094401.87-003832.1, a nearby (z=0.0049z=0.0049) metal poor dwarf galaxy at least fifty times less massive than the LMC. The [Fe X] λ\lambda6374 emission is compact and centered on the brightest nuclear source, with a spatial extent of \approx100 pc. The [Fe X] luminosity is 1037\approx 10^{37} erg s1^{-1}, within the range seen in previously identified AGNs in the dwarf galaxy population. This line has never been observed in gas ionized by hot stars. While it can be produced in supernova ejecta, the [Fe X] flux from SDSS J094401.87-003832.1 has persisted over the ~19 year time period between the SDSS and MUSE observations, ruling out supernovae as the origin for the emission. The FWHM of the broad component of the Hα\alpha line is 446±17446 \pm 17 km s1^{-1} and its luminosity is 1.5×1038\approx 1.5\times10^{38} erg s1^{-1}, lower than the broad line luminosities of previously identified low mass broad line AGNs. These observations, together with previously reported multi-wavelength observations, can most plausibly be explained by the presence of an accreting intermediate mass black hole in a primordial galaxy analog. However, we cannot rule out the possibility that current stellar population models of metal poor stars significantly under-predict the stellar ionizing photon flux, and that metal poor stars can produce an extreme ionizing spectrum similar to that produced by AGNs.Comment: 12 pages, 5 figures, 1 table, submitted to ApJL. Comments welcom

    Validating AU Microscopii d with Transit Timing Variations

    Get PDF
    AU Mic is a young (22 Myr), nearby exoplanetary system that exhibits excess transit timing variations (TTVs) that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical “validation” of the tentative planet AU Mic d (even though there are examples of “confirmed” planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O − C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for d’s period, then follow those up with detailed TTV and radial velocity Markov Chain Monte Carlo modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596 ± 0.00793 days ( T _C _,d = 2458340.55781 ± 0.11641 BJD), which puts the three planets near 4:6:9 mean-motion resonance. The mass for d is 1.053 ± 0.511 M _⊕ , making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet’s atmosphere. Additional TTV observations of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c

    Validating AU Microscopii d with Transit Timing Variations

    Full text link
    AU Mic is a young (22 Myr) nearby exoplanetary system that exhibits excess TTVs that cannot be accounted for by the two known transiting planets nor stellar activity. We present the statistical "validation" of the tentative planet AU Mic d (even though there are examples of "confirmed" planets with ambiguous orbital periods). We add 18 new transits and nine midpoint times in an updated TTV analysis to prior work. We perform the joint modeling of transit light curves using EXOFASTv2 and extract the transit midpoint times. Next, we construct an O-C diagram and use Exo-Striker to model the TTVs. We generate TTV log-likelihood periodograms to explore possible solutions for the period of planet d and then follow those up with detailed TTV and RV MCMC modeling and stability tests. We find several candidate periods for AU Mic d, all of which are near resonances with AU Mic b and c of varying order. Based on our model comparisons, the most-favored orbital period of AU Mic d is 12.73596+/-0.00793 days (T_{C,d}=2458340.55781+/-0.11641 BJD), which puts the three planets near a 4:6:9 mean-motion orbital resonance. The mass for d is 1.053+/-0.511 M_E, making this planet Earth-like in mass. If confirmed, AU Mic d would be the first known Earth-mass planet orbiting a young star and would provide a valuable opportunity in probing a young terrestrial planet's atmosphere. Additional TTV observation of the AU Mic system are needed to further constrain the planetary masses, search for possible transits of AU Mic d, and detect possible additional planets beyond AU Mic c.Comment: 89 pages, 35 figures, 34 tables. Redid EXOFASTv2 transit modeling to recover more reasonable stellar posteriors, so redid Exo-Striker TTV modeling for consistency. Despite these changes, the overall results remain unchanged: the 12-7-day case is still the most favored. Submitted to AAS Journals on 2023 Feb 9t

    The Magellan-TESS Survey I: Survey Description and Mid-Survey Results

    Get PDF
    One of the most significant revelations from Kepler is that roughly one-third of Sun-like stars host planets which orbit their stars within 100 days and are between the size of Earth and Neptune. How do these super-Earth and sub-Neptune planets form, what are they made of, and do they represent a continuous population or naturally divide into separate groups? Measuring their masses and thus bulk densities can help address these questions of their origin and composition. To that end, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 transiting exoplanets discovered by TESS and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, RV measurements of small planets have been challenging to obtain due to the faintness and low RV semi-amplitudes of most Kepler systems, and challenging to interpret due to the potential biases in the existing ensemble of small planet masses from non-algorithmic decisions for target selection and observation plans. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and multi-year observing strategy. In this paper, we (1) describe the motivation and survey strategy behind the MTS, (2) present our first catalog of planet mass and density constraints for 25 TESS Objects of Interest (TOIs; 20 in our population analysis sample, five that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find qualitative agreement with prior mass-radius relations but some quantitative differences (abridged). The the results of this work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.Comment: 101 pages (39 of main text and references, the rest an appendix of figures and tables). Submitted to AAS Journal

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here, we present twenty hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program (TFOP). These twenty planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9<G<13.010.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976 b, the longest period planet in our sample (P=6.6P = 6.6 days), may be on a moderately eccentric orbit (e=0.18±0.06e = 0.18\pm0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hour orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well-aligned with the stellar spin axis (λ=4.0±3.5|\lambda| = 4.0\pm3.5^\circ). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster, but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.Comment: 67 pages, 11 tables, 13 figures, 2 figure sets. Resubmitted to ApJS after revision

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.1820.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.1960.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.350.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
    corecore