666 research outputs found

    Alloys-by-design:A low-modulus titanium alloy for additively manufactured biomedical implants

    Get PDF
    The performance of many metal biomedical implants – such as fusion cages for spines – is inherently limited by the mismatch of mechanical properties between the metal and the biological bone tissue it promotes. Here, an alloy design approach is used to isolate titanium alloy compositions for biocompatibility which exhibit a modulus of elasticity lower than the Ti-6Al-4V grade commonly employed for this application. Due to the interest in alloys for personalised medicine, additive manufacturability is also considered: compositions with low cracking susceptibility and with propensity for non-planar growth are identified. An optimal alloy composition is selected for selective laser melting, and its processability and mechanical properties tested. Additive manufacturing is used to engineer an heterogeneous microstructure with outstanding combined strength and ductility. Our results confirm the suitability of novel titanium alloys for lowering the stiffness towards that needed whilst being additively manufacturable and strong

    Alloys-by-design:A low-modulus titanium alloy for additively manufactured biomedical implants

    Get PDF
    The performance of many metal biomedical implants – such as fusion cages for spines – is inherently limited by the mismatch of mechanical properties between the metal and the biological bone tissue it promotes. Here, an alloy design approach is used to isolate titanium alloy compositions for biocompatibility which exhibit a modulus of elasticity lower than the Ti-6Al-4V grade commonly employed for this application. Due to the interest in alloys for personalised medicine, additive manufacturability is also considered: compositions with low cracking susceptibility and with propensity for non-planar growth are identified. An optimal alloy composition is selected for selective laser melting, and its processability and mechanical properties tested. Additive manufacturing is used to engineer an heterogeneous microstructure with outstanding combined strength and ductility. Our results confirm the suitability of novel titanium alloys for lowering the stiffness towards that needed whilst being additively manufacturable and strong

    X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy

    Get PDF
    In this paper, we report on the residual stresses in laser surface melted Ti-6Al-4V, determined using X-ray diffraction methods. The principal result is that there is an increase in the transverse residual stress with each successive, overlapping laser track. The result can be used to explain the observation of crack formation in overlapping tracks but not necessarily in single tracks produced under identical processing conditions.

    Regularized overlap and the chiral determinant

    Get PDF
    We study the relationship between the continuum overlap and its corresponding chiral determinant, showing that the former amounts to an unregularised version of the latter. We then construct a regularised continuum overlap, and consider the chiral anomalies that follow therefrom. The relation between these anomalies and the ones derived from the formal (i.e., unregularised) overlap is elucidated.Comment: 14 pages, late

    Various spin-polarization states beyond the maximum-density droplet: a quantum Monte Carlo study

    Full text link
    Using variational quantum Monte Carlo method, the effect of Landau-level mixing on the lowest-energy--state diagram of small quantum dots is studied in the magnetic field range where the density of magnetic flux quanta just exceeds the density of electrons. An accurate analytical many-body wave function is constructed for various angular momentum and spin states in the lowest Landau level, and Landau-level mixing is then introduced using a Jastrow factor. The effect of higher Landau levels is shown to be significant; the transition lines are shifted considerably towards higher values of magnetic field and certain lowest-energy states vanish altogether.Comment: 4 pages, 2 figures. Submitted to Phys. Rev.

    Eigenvalue estimates for non-selfadjoint Dirac operators on the real line

    Get PDF
    We show that the non-embedded eigenvalues of the Dirac operator on the real line with non-Hermitian potential VV lie in the disjoint union of two disks in the right and left half plane, respectively, provided that the L1normL^1-norm of VV is bounded from above by the speed of light times the reduced Planck constant. An analogous result for the Schr\"odinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on VV implies the absence of nonreal eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials

    On the Resolution of the Time-Like Singularities in Reissner-Nordstrom and Negative-Mass Schwarzschild

    Full text link
    Certain time-like singularities are shown to be resolved already in classical General Relativity once one passes from particle probes to scalar waves. The time evolution can be defined uniquely and some general conditions for that are formulated. The Reissner-Nordstrom singularity allows for communication through the singularity and can be termed "beam splitter" since the transmission probability of a suitably prepared high energy wave packet is 25%. The high frequency dependence of the cross section is w^{-4/3}. However, smooth geometries arbitrarily close to the singular one require a finite amount of negative energy matter. The negative-mass Schwarzschild has a qualitatively different resolution interpreted to be fully reflecting. These 4d results are similar to the 2d black hole and are generalized to an arbitrary dimension d>4.Comment: 47 pages, 5 figures. v2: See end of introduction for an important note adde

    Composite Fermion Description of Correlated Electrons in Quantum Dots: Low Zeeman Energy Limit

    Full text link
    We study the applicability of composite fermion theory to electrons in two-dimensional parabolically-confined quantum dots in a strong perpendicular magnetic field in the limit of low Zeeman energy. The non-interacting composite fermion spectrum correctly specifies the primary features of this system. Additional features are relatively small, indicating that the residual interaction between the composite fermions is weak. \footnote{Published in Phys. Rev. B {\bf 52}, 2798 (1995).}Comment: 15 pages, 7 postscript figure
    corecore