671 research outputs found
Tunneling broadening of vibrational sidebands in molecular transistors
Transport through molecular quantum dots coupled to a single vibration mode
is studied in the case with strong coupling to the leads. We use an expansion
in the correlation between electrons on the molecule and electrons in the leads
and show that the tunneling broadening is strongly suppressed by the
combination of the Pauli principle and the quantization of the oscillator. As a
consequence the first Frank-Condon step is sharper than the higher order ones,
and its width, when compared to the bare tunneling strength, is reduced by the
overlap between the groundstates of the displaced and the non-displaced
oscillator.Comment: 8 pages, 3 figures. PRB, in pres
Recommended from our members
Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs
The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research
Comment on: “Peatland carbon stocks and burn history: Blanket bog peat core evidence highlights charcoal impacts on peat physical properties and long-term carbon storage”, by A. Heinemeyer, Q. Asena, W.L. Burn and A.L. Jones (Geo: Geography and Environment. 2018; e00063)
A recent paper by Heinemeyer et al. (2018) in this journal has suggested that the use of prescribed fire may enhance carbon accumulation in UK upland blanket bogs. We challenge this finding based on a number of concerns with the original manuscript including the lack of an unburned control, insufficient replication, unrecognised potential confounding factors, and potentially large inaccuracies in the core dating approach used to calculate carbon accumulation rates. We argue that burn‐management of peatlands is more likely to lead to carbon loss than carbon gain
Formal methods and tools for the development of distributed and real time systems : Esprit Project 3096 (SPEC)
The Basic Research Action No. 3096, Formal Methods snd Tools for the Development of Distributed and Real Time Systems, is funded in the Area of Computer Science, under the ESPRIT Programme of the European Community. The coordinating institution is the Department of Computing Science, Eindhoven University of Technology, and the participating Institutions are the Institute of Computer Science of Crete. the Swedish Institute of Computer Science, the Programmimg Research Group of the University of Oxford, and the Computer Science Departments of the University of Manchester, Imperial
College. Weizmann Institute of Science, Eindhoven University of Technology, IMAG Grenoble. Catholic University of Nijmegen, and the University of Liege. This document contains the synopsis. and part of the sections on objectives and area of advance, on baseline and rationale, on research goals, and on organisation of the action, as contained in the original proposal, submitted June, 198S. The section on the state of the art (18 pages) and the full list of references (21 pages) of the original proposal have been deleted because of limitation of available space
Donor Centers and Absorption Spectra in Quantum Dots
We have studied the electronic properties and optical absorption spectra of
three different cases of donor centers, D^{0}, D^{-} and D^{2-}, which are
subjected to a perpendicular magnetic field, using the exact diagonalization
method. The energies of the lowest lying states are obtained as function of the
applied magnetic field strength B and the distance zeta between the positive
ion and the confinement xy-plane. Our calculations indicate that the positive
ion induces transitions in the ground-state, which can be observed clearly in
the absorption spectra, but as zeta goes to 0 the strength of the applied
magnetic field needed for a transition to occur tends to infinity.Comment: 5 pages, 4 figures, REVTeX 4, gzipped tar fil
Quantization of the Damped Harmonic Oscillator Revisited
We return to the description of the damped harmonic oscillator by means of a
closed quantum theory with a general assessment of previous works, in
particular the Bateman-Caldirola-Kanai model and a new model recently proposed
by one of the authors. We show the local equivalence between the two models and
argue that latter has better high energy behavior and is naturally connected to
existing open-quantum-systems approaches.Comment: 16 page
Electronic structure and magnetism of Mn doped GaN
Mn doped semiconductors are extremely interesting systems due to their novel
magnetic properties suitable for the spintronics applications. It has been
shown recently by both theory and experiment that Mn doped GaN systems have a
very high Curie temperature compared to that of Mn doped GaAs systems. To
understand the electronic and magnetic properties, we have studied Mn doped GaN
system in detail by a first principles plane wave method. We show here the
effect of varying Mn concentration on the electronic and magnetic properties.
For dilute Mn concentration, states of Mn form an impurity band completely
separated from the valence band states of the host GaN. This is in contrast to
the Mn doped GaAs system where Mn states in the gap lie very close to the
valence band edge and hybridizes strongly with the delocalized valence band
states.
To study the effects of electron correlation, LSDA+U calculations have been
performed.
Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to
that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn
spins is not decreased substantially for large Mn-Mn separation. Also, the
exchange interactions are anisotropic in different crystallographic directions
due to the presence or absence of connectivity between Mn atoms through As
bonds.Comment: 6 figures, submitted to Phys. Rev.
Current-Induced Effects in Nanoscale Conductors
We present an overview of current-induced effects in nanoscale conductors
with emphasis on their description at the atomic level. In particular, we
discuss steady-state current fluctuations, current-induced forces, inelastic
scattering and local heating. All of these properties are calculated in terms
of single-particle wavefunctions computed using a scattering approach within
the static density-functional theory of many-electron systems. Examples of
current-induced effects in atomic and molecular wires will be given and
comparison with experimental results will be provided when available.Comment: revtex, 10 pages, 8 figure
Familial influences on sustained attention and inhibition in preschoolers
Background: In this study several aspects of attention were studied in 237 nearly 6-year-old twin pairs. Specifically, the ability to sustain attention and inhibition were investigated using a computerized test battery (Amsterdam Neuropsychological Tasks). Furthermore, the Teacher's Report Form (TRF) was filled out by the teacher of the child and the attention subscale of this questionnaire was analyzed. Methods: The variance in performance on the different tasks of the test battery and the score on the attention scale of the TRF were decomposed into a contribution of the additive effects of many genes (A), environmental effects that are shared by twins (C) and unique environmental influences not shared by twins (E) by using data from MZ and DZ twins. Results: The genetic model fitting results showed an effect of A and E for the attention scale of the TRF, and for some of the inhibition and sustained attention measures. For most of the attention variables, however, it was not possible to decide between a model with A and E or a model with C and E. Time-on-task effects on reaction time or number of errors and the delay after making an error did not show familial resemblances. A remarkable finding was that the heritability of the attention scale of the TRF was found to be higher than the heritability of indices that can be considered to be more direct measures of attention, such as mean tempo in the sustained attention task and response speed in the Go-NoGo task. Conclusion: In preschoolers, familial resemblances on sustained attention and inhibition were observed. © Association for Child Psychology and Psychiatry, 2004
Mining metrics for buried treasure
The same but different: That might describe two metrics. On the surface
CLASSI may show two metrics are locally equivalent, but buried beneath one may
be a wealth of further structure. This was beautifully described in a paper by
M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat
metrics -- one describing ordinary Minkowski spacetime and the other describing
a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out
the beautiful hidden classical singularity structure of the latter (a structure
first noticed by Tod in 1994) and then show how quantum considerations can
illuminate the riches. I will then discuss how quantum structure can help us
understand classical singularities and metric parameters in a variety of exact
solutions mined from the Exact Solutions book.Comment: 16 pages, no figures, minor grammatical changes, submitted to
Proceedings of the Malcolm@60 Conference (London, July 2004
- …